A novel investigation on the effects of state and reward structure in designing deep reinforcement learning-based controller for nonlinear dynamical systems
In the last decade, the popularity of deep reinforcement learning (DRL)-based controller design for complex and uncertain nonlinear dynamic systems has grown exponentially due to its model-free approach. Most of these studies focus on algorithmic developments to improve the learning process. However...
Gespeichert in:
Veröffentlicht in: | International journal of dynamics and control 2024-08, Vol.12 (8), p.3017-3032 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!