Polypropylene matrix embedded with Curaua fiber through hot compression processing: characteristics study

The conventional method made polymer matrix composites found voids, inconsistency, and limited production reasons advanced fabrication techniques are referred to for polymer composite production. With the benefits of complex shape production, the hot compression moulding process is suitable for poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer research 2024-09, Vol.31 (9), Article 260
Hauptverfasser: Sharma, Ajay, Venkatesh, R., Chaturvedi, Rishabh, Kumar, Rakesh, Vivekananda, Pradeep Kumar Khatokar, Mohanavel, Vinayagam, Soudagar, Manzoore Elahi Mohammad, Al Obaid, Sami, Salmen, Saleh Hussein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of polymer research
container_volume 31
creator Sharma, Ajay
Venkatesh, R.
Chaturvedi, Rishabh
Kumar, Rakesh
Vivekananda, Pradeep Kumar Khatokar
Mohanavel, Vinayagam
Soudagar, Manzoore Elahi Mohammad
Al Obaid, Sami
Salmen, Saleh Hussein
description The conventional method made polymer matrix composites found voids, inconsistency, and limited production reasons advanced fabrication techniques are referred to for polymer composite production. With the benefits of complex shape production, the hot compression moulding process is suitable for polymer composite fabrication, and thermo-plastic polymer grade polypropylene (PP) is the source of automotive components, including door panels, bumpers, and interior trim reasons. The PP based composites are fabricated with alkali-treated Curaua fiber (ACF) as 0, 6, 12, and 18 percentage of its weight (wt%) through hot compression method followed by 100 MPa compression pressure. The fabricated polypropylene composites like PP, PP/6% ACF, PP/12% ACF, and PP/18% ACF characteristics such as microstructure, interfacial strength, flexural strength, tensile stress, elongation at break, and fracture toughness are investigated. The effect of ACF fiber blend and compression processing on the behaviour of composites are compared. Microstructural studies revealed that the ACF is effectively dispersed in the PP matrix influences better composite behaviour, and the composite sample of PP/18% of ACF exploited superior interfacial strength, flexural strength, tensile stress, elongation at break, and fracture toughness, which values are 9.8 ± 0.1 MPa, 79 ± 1 MPa, 67 ± 2 MPa, 136 ± 2%, and 1.48 MPam 0.5 . It is more than the characteristics of PP prepared without ACF. However, the hot compression processing for PP and ACF found better enhancement in interfacial strength.
doi_str_mv 10.1007/s10965-024-04108-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3094803255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094803255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-530adf1c61d500425b1e4ba59b447771d9ae6b6dabc6257d179246c1e9be53103</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhosoOI6-gKuA6-hJ2jSNOxm8wYAudB1y67TDtKlJivbt7TiCO1fnX_yXw5dllwSuCQC_iQREyTDQAkNBoMLTUbYgjFNciZwdzxooxYKXcJqdxbgFYIyX1SJrX_1uGoIfpp3rHepUCu0Xcp121jqLPtvUoNUY1KhQ3WoXUGqCHzcNanxCxndDcDG2vkdzh9nLfnOLTKOCMsmFNqbWRBTTaKfz7KRWu-gufu8ye3-4f1s94fXL4_Pqbo0NBUiY5aBsTUxJLAMoKNPEFVoxoYuCc06sUK7UpVXalJRxS7igRWmIE9qxnEC-zK4OvfNHH6OLSW79GPp5UuYgigpyytjsogeXCT7G4Go5hLZTYZIE5B6pPCCVM1L5g1ROcyg_hOJs7jcu_FX_k_oGyqF8Qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094803255</pqid></control><display><type>article</type><title>Polypropylene matrix embedded with Curaua fiber through hot compression processing: characteristics study</title><source>SpringerNature Journals</source><creator>Sharma, Ajay ; Venkatesh, R. ; Chaturvedi, Rishabh ; Kumar, Rakesh ; Vivekananda, Pradeep Kumar Khatokar ; Mohanavel, Vinayagam ; Soudagar, Manzoore Elahi Mohammad ; Al Obaid, Sami ; Salmen, Saleh Hussein</creator><creatorcontrib>Sharma, Ajay ; Venkatesh, R. ; Chaturvedi, Rishabh ; Kumar, Rakesh ; Vivekananda, Pradeep Kumar Khatokar ; Mohanavel, Vinayagam ; Soudagar, Manzoore Elahi Mohammad ; Al Obaid, Sami ; Salmen, Saleh Hussein</creatorcontrib><description>The conventional method made polymer matrix composites found voids, inconsistency, and limited production reasons advanced fabrication techniques are referred to for polymer composite production. With the benefits of complex shape production, the hot compression moulding process is suitable for polymer composite fabrication, and thermo-plastic polymer grade polypropylene (PP) is the source of automotive components, including door panels, bumpers, and interior trim reasons. The PP based composites are fabricated with alkali-treated Curaua fiber (ACF) as 0, 6, 12, and 18 percentage of its weight (wt%) through hot compression method followed by 100 MPa compression pressure. The fabricated polypropylene composites like PP, PP/6% ACF, PP/12% ACF, and PP/18% ACF characteristics such as microstructure, interfacial strength, flexural strength, tensile stress, elongation at break, and fracture toughness are investigated. The effect of ACF fiber blend and compression processing on the behaviour of composites are compared. Microstructural studies revealed that the ACF is effectively dispersed in the PP matrix influences better composite behaviour, and the composite sample of PP/18% of ACF exploited superior interfacial strength, flexural strength, tensile stress, elongation at break, and fracture toughness, which values are 9.8 ± 0.1 MPa, 79 ± 1 MPa, 67 ± 2 MPa, 136 ± 2%, and 1.48 MPam 0.5 . It is more than the characteristics of PP prepared without ACF. However, the hot compression processing for PP and ACF found better enhancement in interfacial strength.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-024-04108-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive parts ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Composite fabrication ; Compressive strength ; Elongation ; Flexural strength ; Fracture toughness ; Hot pressing ; Industrial Chemistry/Chemical Engineering ; Interfacial strength ; Microstructure ; Original Paper ; Polymer matrix composites ; Polymer Sciences ; Polymers ; Polypropylene ; Pressure molding ; Tensile stress</subject><ispartof>Journal of polymer research, 2024-09, Vol.31 (9), Article 260</ispartof><rights>The Polymer Society, Taipei 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-530adf1c61d500425b1e4ba59b447771d9ae6b6dabc6257d179246c1e9be53103</cites><orcidid>0000-0002-9057-8185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-024-04108-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-024-04108-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sharma, Ajay</creatorcontrib><creatorcontrib>Venkatesh, R.</creatorcontrib><creatorcontrib>Chaturvedi, Rishabh</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Vivekananda, Pradeep Kumar Khatokar</creatorcontrib><creatorcontrib>Mohanavel, Vinayagam</creatorcontrib><creatorcontrib>Soudagar, Manzoore Elahi Mohammad</creatorcontrib><creatorcontrib>Al Obaid, Sami</creatorcontrib><creatorcontrib>Salmen, Saleh Hussein</creatorcontrib><title>Polypropylene matrix embedded with Curaua fiber through hot compression processing: characteristics study</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>The conventional method made polymer matrix composites found voids, inconsistency, and limited production reasons advanced fabrication techniques are referred to for polymer composite production. With the benefits of complex shape production, the hot compression moulding process is suitable for polymer composite fabrication, and thermo-plastic polymer grade polypropylene (PP) is the source of automotive components, including door panels, bumpers, and interior trim reasons. The PP based composites are fabricated with alkali-treated Curaua fiber (ACF) as 0, 6, 12, and 18 percentage of its weight (wt%) through hot compression method followed by 100 MPa compression pressure. The fabricated polypropylene composites like PP, PP/6% ACF, PP/12% ACF, and PP/18% ACF characteristics such as microstructure, interfacial strength, flexural strength, tensile stress, elongation at break, and fracture toughness are investigated. The effect of ACF fiber blend and compression processing on the behaviour of composites are compared. Microstructural studies revealed that the ACF is effectively dispersed in the PP matrix influences better composite behaviour, and the composite sample of PP/18% of ACF exploited superior interfacial strength, flexural strength, tensile stress, elongation at break, and fracture toughness, which values are 9.8 ± 0.1 MPa, 79 ± 1 MPa, 67 ± 2 MPa, 136 ± 2%, and 1.48 MPam 0.5 . It is more than the characteristics of PP prepared without ACF. However, the hot compression processing for PP and ACF found better enhancement in interfacial strength.</description><subject>Automotive parts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite fabrication</subject><subject>Compressive strength</subject><subject>Elongation</subject><subject>Flexural strength</subject><subject>Fracture toughness</subject><subject>Hot pressing</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Interfacial strength</subject><subject>Microstructure</subject><subject>Original Paper</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Pressure molding</subject><subject>Tensile stress</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhosoOI6-gKuA6-hJ2jSNOxm8wYAudB1y67TDtKlJivbt7TiCO1fnX_yXw5dllwSuCQC_iQREyTDQAkNBoMLTUbYgjFNciZwdzxooxYKXcJqdxbgFYIyX1SJrX_1uGoIfpp3rHepUCu0Xcp121jqLPtvUoNUY1KhQ3WoXUGqCHzcNanxCxndDcDG2vkdzh9nLfnOLTKOCMsmFNqbWRBTTaKfz7KRWu-gufu8ye3-4f1s94fXL4_Pqbo0NBUiY5aBsTUxJLAMoKNPEFVoxoYuCc06sUK7UpVXalJRxS7igRWmIE9qxnEC-zK4OvfNHH6OLSW79GPp5UuYgigpyytjsogeXCT7G4Go5hLZTYZIE5B6pPCCVM1L5g1ROcyg_hOJs7jcu_FX_k_oGyqF8Qg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Sharma, Ajay</creator><creator>Venkatesh, R.</creator><creator>Chaturvedi, Rishabh</creator><creator>Kumar, Rakesh</creator><creator>Vivekananda, Pradeep Kumar Khatokar</creator><creator>Mohanavel, Vinayagam</creator><creator>Soudagar, Manzoore Elahi Mohammad</creator><creator>Al Obaid, Sami</creator><creator>Salmen, Saleh Hussein</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9057-8185</orcidid></search><sort><creationdate>20240901</creationdate><title>Polypropylene matrix embedded with Curaua fiber through hot compression processing: characteristics study</title><author>Sharma, Ajay ; Venkatesh, R. ; Chaturvedi, Rishabh ; Kumar, Rakesh ; Vivekananda, Pradeep Kumar Khatokar ; Mohanavel, Vinayagam ; Soudagar, Manzoore Elahi Mohammad ; Al Obaid, Sami ; Salmen, Saleh Hussein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-530adf1c61d500425b1e4ba59b447771d9ae6b6dabc6257d179246c1e9be53103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automotive parts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite fabrication</topic><topic>Compressive strength</topic><topic>Elongation</topic><topic>Flexural strength</topic><topic>Fracture toughness</topic><topic>Hot pressing</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Interfacial strength</topic><topic>Microstructure</topic><topic>Original Paper</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Pressure molding</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Ajay</creatorcontrib><creatorcontrib>Venkatesh, R.</creatorcontrib><creatorcontrib>Chaturvedi, Rishabh</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Vivekananda, Pradeep Kumar Khatokar</creatorcontrib><creatorcontrib>Mohanavel, Vinayagam</creatorcontrib><creatorcontrib>Soudagar, Manzoore Elahi Mohammad</creatorcontrib><creatorcontrib>Al Obaid, Sami</creatorcontrib><creatorcontrib>Salmen, Saleh Hussein</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Ajay</au><au>Venkatesh, R.</au><au>Chaturvedi, Rishabh</au><au>Kumar, Rakesh</au><au>Vivekananda, Pradeep Kumar Khatokar</au><au>Mohanavel, Vinayagam</au><au>Soudagar, Manzoore Elahi Mohammad</au><au>Al Obaid, Sami</au><au>Salmen, Saleh Hussein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polypropylene matrix embedded with Curaua fiber through hot compression processing: characteristics study</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>31</volume><issue>9</issue><artnum>260</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>The conventional method made polymer matrix composites found voids, inconsistency, and limited production reasons advanced fabrication techniques are referred to for polymer composite production. With the benefits of complex shape production, the hot compression moulding process is suitable for polymer composite fabrication, and thermo-plastic polymer grade polypropylene (PP) is the source of automotive components, including door panels, bumpers, and interior trim reasons. The PP based composites are fabricated with alkali-treated Curaua fiber (ACF) as 0, 6, 12, and 18 percentage of its weight (wt%) through hot compression method followed by 100 MPa compression pressure. The fabricated polypropylene composites like PP, PP/6% ACF, PP/12% ACF, and PP/18% ACF characteristics such as microstructure, interfacial strength, flexural strength, tensile stress, elongation at break, and fracture toughness are investigated. The effect of ACF fiber blend and compression processing on the behaviour of composites are compared. Microstructural studies revealed that the ACF is effectively dispersed in the PP matrix influences better composite behaviour, and the composite sample of PP/18% of ACF exploited superior interfacial strength, flexural strength, tensile stress, elongation at break, and fracture toughness, which values are 9.8 ± 0.1 MPa, 79 ± 1 MPa, 67 ± 2 MPa, 136 ± 2%, and 1.48 MPam 0.5 . It is more than the characteristics of PP prepared without ACF. However, the hot compression processing for PP and ACF found better enhancement in interfacial strength.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-024-04108-y</doi><orcidid>https://orcid.org/0000-0002-9057-8185</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-9760
ispartof Journal of polymer research, 2024-09, Vol.31 (9), Article 260
issn 1022-9760
1572-8935
language eng
recordid cdi_proquest_journals_3094803255
source SpringerNature Journals
subjects Automotive parts
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Composite fabrication
Compressive strength
Elongation
Flexural strength
Fracture toughness
Hot pressing
Industrial Chemistry/Chemical Engineering
Interfacial strength
Microstructure
Original Paper
Polymer matrix composites
Polymer Sciences
Polymers
Polypropylene
Pressure molding
Tensile stress
title Polypropylene matrix embedded with Curaua fiber through hot compression processing: characteristics study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polypropylene%20matrix%20embedded%20with%20Curaua%20fiber%20through%20hot%20compression%20processing:%20characteristics%20study&rft.jtitle=Journal%20of%20polymer%20research&rft.au=Sharma,%20Ajay&rft.date=2024-09-01&rft.volume=31&rft.issue=9&rft.artnum=260&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-024-04108-y&rft_dat=%3Cproquest_cross%3E3094803255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094803255&rft_id=info:pmid/&rfr_iscdi=true