Polypropylene matrix embedded with Curaua fiber through hot compression processing: characteristics study
The conventional method made polymer matrix composites found voids, inconsistency, and limited production reasons advanced fabrication techniques are referred to for polymer composite production. With the benefits of complex shape production, the hot compression moulding process is suitable for poly...
Gespeichert in:
Veröffentlicht in: | Journal of polymer research 2024-09, Vol.31 (9), Article 260 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The conventional method made polymer matrix composites found voids, inconsistency, and limited production reasons advanced fabrication techniques are referred to for polymer composite production. With the benefits of complex shape production, the hot compression moulding process is suitable for polymer composite fabrication, and thermo-plastic polymer grade polypropylene (PP) is the source of automotive components, including door panels, bumpers, and interior trim reasons. The PP based composites are fabricated with alkali-treated Curaua fiber (ACF) as 0, 6, 12, and 18 percentage of its weight (wt%) through hot compression method followed by 100 MPa compression pressure. The fabricated polypropylene composites like PP, PP/6% ACF, PP/12% ACF, and PP/18% ACF characteristics such as microstructure, interfacial strength, flexural strength, tensile stress, elongation at break, and fracture toughness are investigated. The effect of ACF fiber blend and compression processing on the behaviour of composites are compared. Microstructural studies revealed that the ACF is effectively dispersed in the PP matrix influences better composite behaviour, and the composite sample of PP/18% of ACF exploited superior interfacial strength, flexural strength, tensile stress, elongation at break, and fracture toughness, which values are 9.8 ± 0.1 MPa, 79 ± 1 MPa, 67 ± 2 MPa, 136 ± 2%, and 1.48 MPam
0.5
. It is more than the characteristics of PP prepared without ACF. However, the hot compression processing for PP and ACF found better enhancement in interfacial strength. |
---|---|
ISSN: | 1022-9760 1572-8935 |
DOI: | 10.1007/s10965-024-04108-y |