Compactifications of Moduli of G-Bundles and Conformal Blocks

For a simple Lie algebra of type A or C and a genus g ≥ 2 , we show that the conformal blocks algebra on M ¯ g is finitely generated and relate conformal blocks over singular curves to Schmitt and Muñoz-Castañeda’s compactification of the moduli space of G -bundles.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2024-09, Vol.29 (3), p.1247-1291
1. Verfasser: Wilson, Avery
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a simple Lie algebra of type A or C and a genus g ≥ 2 , we show that the conformal blocks algebra on M ¯ g is finitely generated and relate conformal blocks over singular curves to Schmitt and Muñoz-Castañeda’s compactification of the moduli space of G -bundles.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-023-09820-5