Estimates for the Largest Critical Value of Tn(k)
For T n ( x ) = cos n arccos x , x ∈ [ - 1 , 1 ] , the n -th Chebyshev polynomial of the first kind, we study the quantity τ n , k : = | T n ( k ) ( ω n , k ) | T n ( k ) ( 1 ) , 1 ≤ k ≤ n - 2 , where T n ( k ) is the k -th derivative of T n and ω n , k is the largest zero of T n ( k + 1 ) . Since t...
Gespeichert in:
Veröffentlicht in: | Constructive approximation 2024, Vol.60 (1), p.87-103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For
T
n
(
x
)
=
cos
n
arccos
x
,
x
∈
[
-
1
,
1
]
, the
n
-th Chebyshev polynomial of the first kind, we study the quantity
τ
n
,
k
:
=
|
T
n
(
k
)
(
ω
n
,
k
)
|
T
n
(
k
)
(
1
)
,
1
≤
k
≤
n
-
2
,
where
T
n
(
k
)
is the
k
-th derivative of
T
n
and
ω
n
,
k
is the largest zero of
T
n
(
k
+
1
)
. Since the absolute values of the local extrema of
T
n
(
k
)
increase monotonically towards the end-points of
[
-
1
,
1
]
, the value
τ
n
,
k
shows how small is the largest critical value of
T
n
(
k
)
relative to its global maximum
T
n
(
k
)
(
1
)
. This is a continuation of our (joint with Alexei Shadrin) paper “On the largest critical value of
T
n
(
k
)
”,
SIAM J. Math. Anal.
50
(3), 2018, 2389–2408, where upper bounds and asymptotic formuae for
τ
n
,
k
have been obtained on the basis of the Schaeffer–Duffin pointwise upper bound for polynomials with absolute value not exceeding 1 in
[
-
1
,
1
]
. We exploit a 1996 result of Knut Petras about the weights of the Gaussian quadrature formulae associated with the ultraspherical weight function
w
λ
(
x
)
=
(
1
-
x
2
)
λ
-
1
/
2
to find an explicit (modulo
ω
n
,
k
) formula for
τ
n
,
k
2
. This enables us to prove a lower bound and to refine the previously obtained upper bounds for
τ
n
,
k
. The explicit formula admits also a new derivation of the asymptotic formula approximating
τ
n
,
k
for
n
→
∞
. The new approach is simpler, without using deep results about the ordinates of the Bessel function, and allows to better analyze the sharpness of the estimates. |
---|---|
ISSN: | 0176-4276 1432-0940 |
DOI: | 10.1007/s00365-023-09651-3 |