On p–Laplacian boundary value problems involving Caputo–Katugampula fractional derivatives
In this paper, we study the existence and uniqueness of solutions for a p–Laplacian boundary value problem defined by semilinear fractional system that involves Caputo–Katugampola fractional derivatives. Our main results rely on the implementation of the Banach and Schauder fixed point theorems. An...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-09, Vol.47 (13), p.10799-10816 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the existence and uniqueness of solutions for a p–Laplacian boundary value problem defined by semilinear fractional system that involves Caputo–Katugampola fractional derivatives. Our main results rely on the implementation of the Banach and Schauder fixed point theorems. An example is introduced to expose the applicability of the theoretical findings. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.6534 |