On p–Laplacian boundary value problems involving Caputo–Katugampula fractional derivatives

In this paper, we study the existence and uniqueness of solutions for a p–Laplacian boundary value problem defined by semilinear fractional system that involves Caputo–Katugampola fractional derivatives. Our main results rely on the implementation of the Banach and Schauder fixed point theorems. An...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-09, Vol.47 (13), p.10799-10816
Hauptverfasser: Matar, Mohammed M., Lubbad, Asma A., Alzabut, Jehad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the existence and uniqueness of solutions for a p–Laplacian boundary value problem defined by semilinear fractional system that involves Caputo–Katugampola fractional derivatives. Our main results rely on the implementation of the Banach and Schauder fixed point theorems. An example is introduced to expose the applicability of the theoretical findings.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6534