High‐order convergent methods for singularly perturbed quasilinear problems with integral boundary conditions

In this work, we develop a numerical scheme for a class of singularly perturbed quasilinear problems with integral boundary conditions. The quasilinear equation is discretized using a hybrid scheme, and the composite trapezoidal rule is used to discretize the boundary condition. We construct a gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-09, Vol.47 (13), p.11106-11119
Hauptverfasser: Kumar, Sunil, Kumar, Shashikant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we develop a numerical scheme for a class of singularly perturbed quasilinear problems with integral boundary conditions. The quasilinear equation is discretized using a hybrid scheme, and the composite trapezoidal rule is used to discretize the boundary condition. We construct a general error analysis framework for the discrete scheme. Within this framework, the discrete scheme is shown to be uniformly convergent of O(N−2ln2N) on Shishkin meshes and O(N−2) on Bakhvalov meshes. Further, we propose adaptive generation of meshes based on a suitable monitor function and the mesh equidistribution principle. We prove that on these meshes the discrete scheme is uniformly convergent of O(N−2). Our theoretical findings are supported by numerical results obtained through experiments.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6854