High‐order convergent methods for singularly perturbed quasilinear problems with integral boundary conditions
In this work, we develop a numerical scheme for a class of singularly perturbed quasilinear problems with integral boundary conditions. The quasilinear equation is discretized using a hybrid scheme, and the composite trapezoidal rule is used to discretize the boundary condition. We construct a gener...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-09, Vol.47 (13), p.11106-11119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we develop a numerical scheme for a class of singularly perturbed quasilinear problems with integral boundary conditions. The quasilinear equation is discretized using a hybrid scheme, and the composite trapezoidal rule is used to discretize the boundary condition. We construct a general error analysis framework for the discrete scheme. Within this framework, the discrete scheme is shown to be uniformly convergent of
O(N−2ln2N) on Shishkin meshes and
O(N−2) on Bakhvalov meshes. Further, we propose adaptive generation of meshes based on a suitable monitor function and the mesh equidistribution principle. We prove that on these meshes the discrete scheme is uniformly convergent of
O(N−2). Our theoretical findings are supported by numerical results obtained through experiments. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.6854 |