Sharp adaptive and pathwise stable similarity testing for scalar ergodic diffusions

Within the nonparametric diffusion model, we develop a multiple test to infer about similarity of an unknown drift b to some reference drift b0 : At prescribed significance, we simultaneously identify those regions where violation from similarity occurs, without a priori knowledge of their number, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2024-06, Vol.52 (3), p.1127
Hauptverfasser: Brutsche, Johannes, Rohde, Angelika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within the nonparametric diffusion model, we develop a multiple test to infer about similarity of an unknown drift b to some reference drift b0 : At prescribed significance, we simultaneously identify those regions where violation from similarity occurs, without a priori knowledge of their number, size and location. This test is shown to be minimax-optimal and adaptive. At the same time, the procedure is robust under small deviation from Brownian motion as the driving noise process. A detailed investigation for fractional driving noise, which is neither a semimartingale nor a Markov process, is provided for Hurst indices close to the Brownian motion case.
ISSN:0090-5364
2168-8966
DOI:10.1214/24-AOS2386