Sharp adaptive and pathwise stable similarity testing for scalar ergodic diffusions
Within the nonparametric diffusion model, we develop a multiple test to infer about similarity of an unknown drift b to some reference drift b0 : At prescribed significance, we simultaneously identify those regions where violation from similarity occurs, without a priori knowledge of their number, s...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2024-06, Vol.52 (3), p.1127 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Within the nonparametric diffusion model, we develop a multiple test to infer about similarity of an unknown drift b to some reference drift b0 : At prescribed significance, we simultaneously identify those regions where violation from similarity occurs, without a priori knowledge of their number, size and location. This test is shown to be minimax-optimal and adaptive. At the same time, the procedure is robust under small deviation from Brownian motion as the driving noise process. A detailed investigation for fractional driving noise, which is neither a semimartingale nor a Markov process, is provided for Hurst indices close to the Brownian motion case. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/24-AOS2386 |