Sign-changing solution for an elliptic equation with critical growth at the boundary
We prove the existence of sign-changing solution to the problem - Δ u - 1 2 x · ∇ u = λ u , in R + N , ∂ u ∂ ν = | u | 2 ∗ - 2 u , on ∂ R + N , where R + N = { ( x ′ , x N ) : x ′ ∈ R N - 1 , x N > 0 } is the upper half-space, 2 ∗ : = 2 ( N - 1 ) / ( N - 2 ) , N ≥ 7 , ∂ u ∂ ν is the partial outwa...
Gespeichert in:
Veröffentlicht in: | Nonlinear differential equations and applications 2024-11, Vol.31 (6), Article 100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the existence of sign-changing solution to the problem
-
Δ
u
-
1
2
x
·
∇
u
=
λ
u
,
in
R
+
N
,
∂
u
∂
ν
=
|
u
|
2
∗
-
2
u
,
on
∂
R
+
N
,
where
R
+
N
=
{
(
x
′
,
x
N
)
:
x
′
∈
R
N
-
1
,
x
N
>
0
}
is the upper half-space,
2
∗
:
=
2
(
N
-
1
)
/
(
N
-
2
)
,
N
≥
7
,
∂
u
∂
ν
is the partial outward normal derivative and the parameter
λ
>
0
interacts with the spectrum of the linearized problem. In the proof, we apply variational methods. |
---|---|
ISSN: | 1021-9722 1420-9004 |
DOI: | 10.1007/s00030-024-00990-z |