Heat Properties for Groups

We revisit Fourier’s approach to solve the heat equation on the circle in the context of (twisted) reduced group C*-algebras, convergence of Fourier series and semigroups associated to negative definite functions. We introduce some heat properties for countably infinite groups and investigate when t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2024, Vol.30 (4)
Hauptverfasser: Bédos, Erik, Conti, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit Fourier’s approach to solve the heat equation on the circle in the context of (twisted) reduced group C*-algebras, convergence of Fourier series and semigroups associated to negative definite functions. We introduce some heat properties for countably infinite groups and investigate when they are satisfied. Kazhdan’s property (T) is an obstruction to the weakest property, and our findings leave open the possibility that this might be the only one. On the other hand, many groups with the Haagerup property satisfy the strongest version. We show that this heat property implies that the associated heat problem has a unique solution regardless of the choice of the initial datum.
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-024-10103-0