Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China
Abundant mafic-felsic intrusions distributed in the Altyn Orogen record orogenic histories related to Proto-Tethys and Paleo-Tethys evolution. Zircon U-Pb dating of the intrusive rocks in the eastern Altyn Orogen identifies at least three major tectono-magmatic episodes, yielding ages of ∼426, ∼376–...
Gespeichert in:
Veröffentlicht in: | Journal of earth science (Wuhan, China) China), 2024-08, Vol.35 (4), p.1130-1148 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abundant mafic-felsic intrusions distributed in the Altyn Orogen record orogenic histories related to Proto-Tethys and Paleo-Tethys evolution. Zircon U-Pb dating of the intrusive rocks in the eastern Altyn Orogen identifies at least three major tectono-magmatic episodes, yielding ages of ∼426, ∼376–373 and ∼269–254 Ma. The first two emplacement episodes correspond to the post-collisional magmatism in the Altyn Orogen. The ∼426 Ma granitoids possess adakitic characteristics coupled with enriched isotopes, suggesting that they originated from partial melting of thickened lower continental crust induced by upwelling asthenospheric mantle after slab break-off of the South Altyn Ocean Plate. Next, the ∼376–373 Ma mafic-intermediate rocks and coeval granitoids represent a large thermal event that involved mantle melting with induced new juvenile lower continental crust melting in a post-collisional extensional setting. Finally, the ∼254 Ma diabase dykes intruded into the ∼269 Ma granitoids, which were related to the widespread Late Paleozoic magmatism resulting from Paleo-Tethys Ocean subduction. Post-collisional magmatism in the Altyn Orogen significantly enhances understanding of the tectono-magmatic evolution in the northern Tibetan Plateau. The penetrative influence of Paleo-Tethys Ocean subduction was more extensive than previously thought. |
---|---|
ISSN: | 1674-487X 1867-111X |
DOI: | 10.1007/s12583-021-1603-z |