Cα-helices and Cα- slant helices in fractional differential geometry
In this study, the theory of curves is reconstructed with fractional calculus. The condition of a naturally parametrized curve is described, and the orthonormal conformable frame of the naturally parametrized curve at any point is defined. Conformable helix and conformable slant helix curves are def...
Gespeichert in:
Veröffentlicht in: | Arabian journal of mathematics 2024-08, Vol.13 (2), p.291-301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the theory of curves is reconstructed with fractional calculus. The condition of a naturally parametrized curve is described, and the orthonormal conformable frame of the naturally parametrized curve at any point is defined. Conformable helix and conformable slant helix curves are defined with the help of conformable frame elements at any point of the conformable curve. The characterizations of these curves are obtained in parallel with the conformable analysis Finally, examples are given for a better understanding of the theories and their drawings are given with the help of Mathematics. |
---|---|
ISSN: | 2193-5343 2193-5351 2193-5351 |
DOI: | 10.1007/s40065-024-00460-5 |