Spectral density estimation for random processes with stationary increments

Spectral density analysis plays an important role in studying a stationary random process on a real line. In this paper, we extend this discussion for the random process with stationary increments. We investigate the properties of the method of moments structure function estimation, and propose a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied stochastic models in business and industry 2024-07, Vol.40 (4), p.960-978
Hauptverfasser: Chen, Wei, Huang, Chunfeng, Zhang, Haimeng, Schaffer, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 4
container_start_page 960
container_title Applied stochastic models in business and industry
container_volume 40
creator Chen, Wei
Huang, Chunfeng
Zhang, Haimeng
Schaffer, Matthew
description Spectral density analysis plays an important role in studying a stationary random process on a real line. In this paper, we extend this discussion for the random process with stationary increments. We investigate the properties of the method of moments structure function estimation, and propose a nonparametric spectral density function estimator. Our numerical results show that the proposed spectral density estimator performs comparable with the parametric counterpart when the underlying process is assumed to be band‐limited. Additionally, this method is applied to analyze US Housing Starts Data, where the hidden periodicities are detected, providing consistent conclusions with previous economic studies.
doi_str_mv 10.1002/asmb.2857
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093003971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093003971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2927-b067c1039e24198ea0b64cf712a624ec0821e51d847d9714f3bb528a3264b6bf3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGkvXOcOBlLxT9RxFCYLdtxRKomKbarKt8ep2Vluht-9-69R8gtwgwB2Fz5Vs9YkYkzMsGM5QkHlp0fd55gCfySXHm_AUDkAifkbb2zJji1pZXtfBMGan1oWhWavqN176hTXdW3dOd6Y723nh6a8E19OBLKDbTpjLOt7YK_Jhe12np78zen5Ovp8XP5kqw-nl-Xi1ViWMlEoiEXBiEtLeNYFlaBzrmpBTKVM24NFAxthlXBRVUK5HWqdcYKlbKc61zX6ZTcnXSjqZ999Cs3_d518aVMoUwhSguM1P2JMq733tla7lwM5gaJIMeu5NiVHLuK7PzEHpqtHf4H5WL9_nC8-AXeSWuz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093003971</pqid></control><display><type>article</type><title>Spectral density estimation for random processes with stationary increments</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Wei ; Huang, Chunfeng ; Zhang, Haimeng ; Schaffer, Matthew</creator><creatorcontrib>Chen, Wei ; Huang, Chunfeng ; Zhang, Haimeng ; Schaffer, Matthew</creatorcontrib><description>Spectral density analysis plays an important role in studying a stationary random process on a real line. In this paper, we extend this discussion for the random process with stationary increments. We investigate the properties of the method of moments structure function estimation, and propose a nonparametric spectral density function estimator. Our numerical results show that the proposed spectral density estimator performs comparable with the parametric counterpart when the underlying process is assumed to be band‐limited. Additionally, this method is applied to analyze US Housing Starts Data, where the hidden periodicities are detected, providing consistent conclusions with previous economic studies.</description><identifier>ISSN: 1524-1904</identifier><identifier>EISSN: 1526-4025</identifier><identifier>DOI: 10.1002/asmb.2857</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>band‐limited spectrum ; Density ; Line spectra ; Method of moments ; nonstationarity ; Random processes ; Spectral density function ; structure function</subject><ispartof>Applied stochastic models in business and industry, 2024-07, Vol.40 (4), p.960-978</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2927-b067c1039e24198ea0b64cf712a624ec0821e51d847d9714f3bb528a3264b6bf3</cites><orcidid>0000-0002-3753-8088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasmb.2857$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasmb.2857$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27913,27914,45563,45564</link.rule.ids></links><search><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Huang, Chunfeng</creatorcontrib><creatorcontrib>Zhang, Haimeng</creatorcontrib><creatorcontrib>Schaffer, Matthew</creatorcontrib><title>Spectral density estimation for random processes with stationary increments</title><title>Applied stochastic models in business and industry</title><description>Spectral density analysis plays an important role in studying a stationary random process on a real line. In this paper, we extend this discussion for the random process with stationary increments. We investigate the properties of the method of moments structure function estimation, and propose a nonparametric spectral density function estimator. Our numerical results show that the proposed spectral density estimator performs comparable with the parametric counterpart when the underlying process is assumed to be band‐limited. Additionally, this method is applied to analyze US Housing Starts Data, where the hidden periodicities are detected, providing consistent conclusions with previous economic studies.</description><subject>band‐limited spectrum</subject><subject>Density</subject><subject>Line spectra</subject><subject>Method of moments</subject><subject>nonstationarity</subject><subject>Random processes</subject><subject>Spectral density function</subject><subject>structure function</subject><issn>1524-1904</issn><issn>1526-4025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGkvXOcOBlLxT9RxFCYLdtxRKomKbarKt8ep2Vluht-9-69R8gtwgwB2Fz5Vs9YkYkzMsGM5QkHlp0fd55gCfySXHm_AUDkAifkbb2zJji1pZXtfBMGan1oWhWavqN176hTXdW3dOd6Y723nh6a8E19OBLKDbTpjLOt7YK_Jhe12np78zen5Ovp8XP5kqw-nl-Xi1ViWMlEoiEXBiEtLeNYFlaBzrmpBTKVM24NFAxthlXBRVUK5HWqdcYKlbKc61zX6ZTcnXSjqZ999Cs3_d518aVMoUwhSguM1P2JMq733tla7lwM5gaJIMeu5NiVHLuK7PzEHpqtHf4H5WL9_nC8-AXeSWuz</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Chen, Wei</creator><creator>Huang, Chunfeng</creator><creator>Zhang, Haimeng</creator><creator>Schaffer, Matthew</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3753-8088</orcidid></search><sort><creationdate>202407</creationdate><title>Spectral density estimation for random processes with stationary increments</title><author>Chen, Wei ; Huang, Chunfeng ; Zhang, Haimeng ; Schaffer, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2927-b067c1039e24198ea0b64cf712a624ec0821e51d847d9714f3bb528a3264b6bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>band‐limited spectrum</topic><topic>Density</topic><topic>Line spectra</topic><topic>Method of moments</topic><topic>nonstationarity</topic><topic>Random processes</topic><topic>Spectral density function</topic><topic>structure function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Huang, Chunfeng</creatorcontrib><creatorcontrib>Zhang, Haimeng</creatorcontrib><creatorcontrib>Schaffer, Matthew</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models in business and industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wei</au><au>Huang, Chunfeng</au><au>Zhang, Haimeng</au><au>Schaffer, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral density estimation for random processes with stationary increments</atitle><jtitle>Applied stochastic models in business and industry</jtitle><date>2024-07</date><risdate>2024</risdate><volume>40</volume><issue>4</issue><spage>960</spage><epage>978</epage><pages>960-978</pages><issn>1524-1904</issn><eissn>1526-4025</eissn><abstract>Spectral density analysis plays an important role in studying a stationary random process on a real line. In this paper, we extend this discussion for the random process with stationary increments. We investigate the properties of the method of moments structure function estimation, and propose a nonparametric spectral density function estimator. Our numerical results show that the proposed spectral density estimator performs comparable with the parametric counterpart when the underlying process is assumed to be band‐limited. Additionally, this method is applied to analyze US Housing Starts Data, where the hidden periodicities are detected, providing consistent conclusions with previous economic studies.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asmb.2857</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3753-8088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1524-1904
ispartof Applied stochastic models in business and industry, 2024-07, Vol.40 (4), p.960-978
issn 1524-1904
1526-4025
language eng
recordid cdi_proquest_journals_3093003971
source Wiley Online Library Journals Frontfile Complete
subjects band‐limited spectrum
Density
Line spectra
Method of moments
nonstationarity
Random processes
Spectral density function
structure function
title Spectral density estimation for random processes with stationary increments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20density%20estimation%20for%20random%20processes%20with%20stationary%20increments&rft.jtitle=Applied%20stochastic%20models%20in%20business%20and%20industry&rft.au=Chen,%20Wei&rft.date=2024-07&rft.volume=40&rft.issue=4&rft.spage=960&rft.epage=978&rft.pages=960-978&rft.issn=1524-1904&rft.eissn=1526-4025&rft_id=info:doi/10.1002/asmb.2857&rft_dat=%3Cproquest_cross%3E3093003971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093003971&rft_id=info:pmid/&rfr_iscdi=true