Spectral density estimation for random processes with stationary increments

Spectral density analysis plays an important role in studying a stationary random process on a real line. In this paper, we extend this discussion for the random process with stationary increments. We investigate the properties of the method of moments structure function estimation, and propose a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied stochastic models in business and industry 2024-07, Vol.40 (4), p.960-978
Hauptverfasser: Chen, Wei, Huang, Chunfeng, Zhang, Haimeng, Schaffer, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spectral density analysis plays an important role in studying a stationary random process on a real line. In this paper, we extend this discussion for the random process with stationary increments. We investigate the properties of the method of moments structure function estimation, and propose a nonparametric spectral density function estimator. Our numerical results show that the proposed spectral density estimator performs comparable with the parametric counterpart when the underlying process is assumed to be band‐limited. Additionally, this method is applied to analyze US Housing Starts Data, where the hidden periodicities are detected, providing consistent conclusions with previous economic studies.
ISSN:1524-1904
1526-4025
DOI:10.1002/asmb.2857