Stability of periodic Hamiltonian systems with equal dissipation

This contribution highlights that a linear periodic Hamiltonian system preserves a symplectic structure if a particular dissipation is present. This specific structure is defined by the algebraic properties of μ -symplectic matrices and symmetry of its eigenvalues. A method is established for the st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2024-10, Vol.112 (19), p.17033-17053
Hauptverfasser: Ramírez-Barrios, Miguel, Collado, Joaquín, Dohnal, Fadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This contribution highlights that a linear periodic Hamiltonian system preserves a symplectic structure if a particular dissipation is present. This specific structure is defined by the algebraic properties of μ -symplectic matrices and symmetry of its eigenvalues. A method is established for the stability analysis of this class of systems consisting of damped and coupled Mathieu equations. It enables an efficient computation of the corresponding stability chart. One main strength of the method is the calculation of the stability chart even for large parameter values, especially for the amplitude of the parametric excitation and the system response itself. The proposed stability analysis is applied in detail on two examples consisting of two coupled equations.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-024-09913-0