Source Separation of Multi-source Raw Music using a Residual Quantized Variational Autoencoder
I developed a neural audio codec model based on the residual quantized variational autoencoder architecture. I train the model on the Slakh2100 dataset, a standard dataset for musical source separation, composed of multi-track audio. The model can separate audio sources, achieving almost SoTA result...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | I developed a neural audio codec model based on the residual quantized variational autoencoder architecture. I train the model on the Slakh2100 dataset, a standard dataset for musical source separation, composed of multi-track audio. The model can separate audio sources, achieving almost SoTA results with much less computing power. The code is publicly available at github.com/LeonardoBerti00/Source-Separation-of-Multi-source-Music-using-Residual-Quantizad-Variational-Autoencoder |
---|---|
ISSN: | 2331-8422 |