Finiteness and cofiniteness of fine Selmer groups over function fields
We prove that the dual fine Selmer group of an abelian variety over the unramified \(\mathbb{Z}_{p}\)-extension of a function field is finitely generated over \(\mathbb{Z}_{p}\). This is a function field version of a conjecture of Coates--Sujatha. We further prove that the fine Selmer group is finit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the dual fine Selmer group of an abelian variety over the unramified \(\mathbb{Z}_{p}\)-extension of a function field is finitely generated over \(\mathbb{Z}_{p}\). This is a function field version of a conjecture of Coates--Sujatha. We further prove that the fine Selmer group is finite (respectively zero) if the separable \(p\)-primary torsion of the abelian variety is finite (respectively zero). These results are then generalized to certain ramified \(p\)-adic Lie extensions. |
---|---|
ISSN: | 2331-8422 |