Robust visual-based method and new datasets for ego-lane index estimation in urban environment
Correct and robust ego-lane index estimation is crucial for autonomous driving in the absence of high-definition maps, especially in urban environments. Previous ego-lane index estimation approaches rely on feature extraction, which limits the robustness. To overcome these shortages, this study prop...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2024-09, Vol.35 (5), p.112, Article 112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Correct and robust ego-lane index estimation is crucial for autonomous driving in the absence of high-definition maps, especially in urban environments. Previous ego-lane index estimation approaches rely on feature extraction, which limits the robustness. To overcome these shortages, this study proposes a robust ego-lane index estimation framework upon only the original visual image. After optimization of the processing route, the raw image was randomly cropped in the height direction and then input into a double supervised LaneLoc network to obtain the index estimations and confidences. A post-process was also proposed to achieve the global ego-lane index from the estimated left and right indexes with the total lane number. To evaluate our proposed method, we manually annotated the ego-lane index of public datasets which can work as an ego-lane index estimation baseline for the first time. The proposed algorithm achieved 96.48/95.40% (precision/recall) on the CULane dataset and 99.45/99.49% (precision/recall) on the TuSimple dataset, demonstrating the effectiveness and efficiency of lane localization in diverse driving environments. The code and dataset annotation results will be exposed publicly on
https://github.com/haomo-ai/LaneLoc
. |
---|---|
ISSN: | 0932-8092 1432-1769 |
DOI: | 10.1007/s00138-024-01590-8 |