Probability and Moment Inequalities for Additive Functionals of Geometrically Ergodic Markov Chains

In this paper, we establish moment and Bernstein-type inequalities for additive functionals of geometrically ergodic Markov chains. These inequalities extend the corresponding inequalities for independent random variables. Our conditions cover Markov chains converging geometrically to the stationary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2024, Vol.37 (3), p.2184-2233
Hauptverfasser: Durmus, Alain, Moulines, Eric, Naumov, Alexey, Samsonov, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish moment and Bernstein-type inequalities for additive functionals of geometrically ergodic Markov chains. These inequalities extend the corresponding inequalities for independent random variables. Our conditions cover Markov chains converging geometrically to the stationary distribution either in weighted total variation norm or in weighted Wasserstein distances. Our inequalities apply to unbounded functions and depend explicitly on constants appearing in the conditions that we consider.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-024-01315-7