Probability and Moment Inequalities for Additive Functionals of Geometrically Ergodic Markov Chains
In this paper, we establish moment and Bernstein-type inequalities for additive functionals of geometrically ergodic Markov chains. These inequalities extend the corresponding inequalities for independent random variables. Our conditions cover Markov chains converging geometrically to the stationary...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2024, Vol.37 (3), p.2184-2233 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we establish moment and Bernstein-type inequalities for additive functionals of geometrically ergodic Markov chains. These inequalities extend the corresponding inequalities for independent random variables. Our conditions cover Markov chains converging geometrically to the stationary distribution either in weighted total variation norm or in weighted Wasserstein distances. Our inequalities apply to unbounded functions and depend explicitly on constants appearing in the conditions that we consider. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-024-01315-7 |