TSNet: Task-specific network for joint diabetic retinopathy grading and lesion segmentation of ultra-wide optical coherence tomography angiography images
Diabetic retinopathy (DR) is a common complication of diabetes which may lead to blindness. Early diagnosis can effectively prevent the deterioration of the disease and enable timely treatment. Ophthalmologists diagnose DR by observing ultra-wide optical coherence tomography angiography (UW-OCTA) im...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2024-09, Vol.40 (9), p.5935-5946 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5946 |
---|---|
container_issue | 9 |
container_start_page | 5935 |
container_title | The Visual computer |
container_volume | 40 |
creator | Tang, Jixue Wang, Xiang-ning Yang, Xiaolong Wen, Yang Qian, Bo Chen, Tingli Sheng, Bin |
description | Diabetic retinopathy (DR) is a common complication of diabetes which may lead to blindness. Early diagnosis can effectively prevent the deterioration of the disease and enable timely treatment. Ophthalmologists diagnose DR by observing ultra-wide optical coherence tomography angiography (UW-OCTA) images, which visualize unprecedented detail of DR lesions. In this paper, we propose an end-to-end task-specific network (TSNet) for joint DR grading and lesion segmentation of UW-OCTA images. Specifically, we design task-specific attention block to generate task-specific feature maps for respective segmentation and classification tasks. Furthermore, we devise task-specific fusion block to fuse the original task-specific feature map and augmented task-specific feature map for the following segmentation and classification decoders to generate DR lesion predictive mask and DR grading predictive result. Experiments on a public-available UW-OCTA dataset demonstrate that our model outperforms state-of-the-art (SOTA) multi-task models and achieves promising results on both DR lesion segmentation and DR grading classification tasks |
doi_str_mv | 10.1007/s00371-023-03145-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092489572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092489572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fcf34924bb80c7d6ef384e851c1384bd87d6b80ede742efc2cddc941f5ad79363</originalsourceid><addsrcrecordid>eNp9kctOBCEQRYnRxPHxA65IXKM8uqXbnTG-EqMLxzVhoGgZZ6AFJhM_xb8VHY07N1BF3XuK5CJ0xOgJo1SeZkqFZIRyQahgTUvWW2jCGsEJF6zdRhPKZEe47PpdtJfznNZeNv0EfUyfHqCc46nOrySPYLzzBgco65hesYsJz6MPBVuvZ1DqKNUzxFGXl3c8JG19GLAOFi8g-xhwhmEJoejy1USHV4uSNFl7CziO1a8X2MQXSBAM4BKXsTLGitJh8L-1X-oB8gHacXqR4fDn3kfP11fTy1ty_3hzd3lxT4xgfSHOONH0vJnNOmqkPQMnuga6lhlWi5nt6lsdgQXZcHCGG2tN3zDXait7cSb20fGGO6b4toJc1DyuUqgrlaAV3PWt5FXFNyqTYs4JnBpT_Wd6V4yqrwjUJgJVI1DfEah1NYmNKVdxGCD9of9xfQLA_47A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092489572</pqid></control><display><type>article</type><title>TSNet: Task-specific network for joint diabetic retinopathy grading and lesion segmentation of ultra-wide optical coherence tomography angiography images</title><source>SpringerLink Journals</source><creator>Tang, Jixue ; Wang, Xiang-ning ; Yang, Xiaolong ; Wen, Yang ; Qian, Bo ; Chen, Tingli ; Sheng, Bin</creator><creatorcontrib>Tang, Jixue ; Wang, Xiang-ning ; Yang, Xiaolong ; Wen, Yang ; Qian, Bo ; Chen, Tingli ; Sheng, Bin</creatorcontrib><description>Diabetic retinopathy (DR) is a common complication of diabetes which may lead to blindness. Early diagnosis can effectively prevent the deterioration of the disease and enable timely treatment. Ophthalmologists diagnose DR by observing ultra-wide optical coherence tomography angiography (UW-OCTA) images, which visualize unprecedented detail of DR lesions. In this paper, we propose an end-to-end task-specific network (TSNet) for joint DR grading and lesion segmentation of UW-OCTA images. Specifically, we design task-specific attention block to generate task-specific feature maps for respective segmentation and classification tasks. Furthermore, we devise task-specific fusion block to fuse the original task-specific feature map and augmented task-specific feature map for the following segmentation and classification decoders to generate DR lesion predictive mask and DR grading predictive result. Experiments on a public-available UW-OCTA dataset demonstrate that our model outperforms state-of-the-art (SOTA) multi-task models and achieves promising results on both DR lesion segmentation and DR grading classification tasks</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-023-03145-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angiography ; Artificial Intelligence ; Automation ; Classification ; Computer Graphics ; Computer Science ; Decoders ; Deep learning ; Diabetes ; Diabetic retinopathy ; Disease ; Eye examinations ; Feature maps ; Image Processing and Computer Vision ; Image segmentation ; Lesions ; Medical diagnosis ; Medical imaging ; Medical research ; Optical Coherence Tomography ; Tomography ; Ultrasonic imaging</subject><ispartof>The Visual computer, 2024-09, Vol.40 (9), p.5935-5946</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fcf34924bb80c7d6ef384e851c1384bd87d6b80ede742efc2cddc941f5ad79363</citedby><cites>FETCH-LOGICAL-c319t-fcf34924bb80c7d6ef384e851c1384bd87d6b80ede742efc2cddc941f5ad79363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-023-03145-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00371-023-03145-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tang, Jixue</creatorcontrib><creatorcontrib>Wang, Xiang-ning</creatorcontrib><creatorcontrib>Yang, Xiaolong</creatorcontrib><creatorcontrib>Wen, Yang</creatorcontrib><creatorcontrib>Qian, Bo</creatorcontrib><creatorcontrib>Chen, Tingli</creatorcontrib><creatorcontrib>Sheng, Bin</creatorcontrib><title>TSNet: Task-specific network for joint diabetic retinopathy grading and lesion segmentation of ultra-wide optical coherence tomography angiography images</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Diabetic retinopathy (DR) is a common complication of diabetes which may lead to blindness. Early diagnosis can effectively prevent the deterioration of the disease and enable timely treatment. Ophthalmologists diagnose DR by observing ultra-wide optical coherence tomography angiography (UW-OCTA) images, which visualize unprecedented detail of DR lesions. In this paper, we propose an end-to-end task-specific network (TSNet) for joint DR grading and lesion segmentation of UW-OCTA images. Specifically, we design task-specific attention block to generate task-specific feature maps for respective segmentation and classification tasks. Furthermore, we devise task-specific fusion block to fuse the original task-specific feature map and augmented task-specific feature map for the following segmentation and classification decoders to generate DR lesion predictive mask and DR grading predictive result. Experiments on a public-available UW-OCTA dataset demonstrate that our model outperforms state-of-the-art (SOTA) multi-task models and achieves promising results on both DR lesion segmentation and DR grading classification tasks</description><subject>Angiography</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Classification</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Decoders</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Disease</subject><subject>Eye examinations</subject><subject>Feature maps</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Optical Coherence Tomography</subject><subject>Tomography</subject><subject>Ultrasonic imaging</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctOBCEQRYnRxPHxA65IXKM8uqXbnTG-EqMLxzVhoGgZZ6AFJhM_xb8VHY07N1BF3XuK5CJ0xOgJo1SeZkqFZIRyQahgTUvWW2jCGsEJF6zdRhPKZEe47PpdtJfznNZeNv0EfUyfHqCc46nOrySPYLzzBgco65hesYsJz6MPBVuvZ1DqKNUzxFGXl3c8JG19GLAOFi8g-xhwhmEJoejy1USHV4uSNFl7CziO1a8X2MQXSBAM4BKXsTLGitJh8L-1X-oB8gHacXqR4fDn3kfP11fTy1ty_3hzd3lxT4xgfSHOONH0vJnNOmqkPQMnuga6lhlWi5nt6lsdgQXZcHCGG2tN3zDXait7cSb20fGGO6b4toJc1DyuUqgrlaAV3PWt5FXFNyqTYs4JnBpT_Wd6V4yqrwjUJgJVI1DfEah1NYmNKVdxGCD9of9xfQLA_47A</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Tang, Jixue</creator><creator>Wang, Xiang-ning</creator><creator>Yang, Xiaolong</creator><creator>Wen, Yang</creator><creator>Qian, Bo</creator><creator>Chen, Tingli</creator><creator>Sheng, Bin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240901</creationdate><title>TSNet: Task-specific network for joint diabetic retinopathy grading and lesion segmentation of ultra-wide optical coherence tomography angiography images</title><author>Tang, Jixue ; Wang, Xiang-ning ; Yang, Xiaolong ; Wen, Yang ; Qian, Bo ; Chen, Tingli ; Sheng, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fcf34924bb80c7d6ef384e851c1384bd87d6b80ede742efc2cddc941f5ad79363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angiography</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Classification</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Decoders</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Disease</topic><topic>Eye examinations</topic><topic>Feature maps</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Optical Coherence Tomography</topic><topic>Tomography</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jixue</creatorcontrib><creatorcontrib>Wang, Xiang-ning</creatorcontrib><creatorcontrib>Yang, Xiaolong</creatorcontrib><creatorcontrib>Wen, Yang</creatorcontrib><creatorcontrib>Qian, Bo</creatorcontrib><creatorcontrib>Chen, Tingli</creatorcontrib><creatorcontrib>Sheng, Bin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jixue</au><au>Wang, Xiang-ning</au><au>Yang, Xiaolong</au><au>Wen, Yang</au><au>Qian, Bo</au><au>Chen, Tingli</au><au>Sheng, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSNet: Task-specific network for joint diabetic retinopathy grading and lesion segmentation of ultra-wide optical coherence tomography angiography images</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>40</volume><issue>9</issue><spage>5935</spage><epage>5946</epage><pages>5935-5946</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Diabetic retinopathy (DR) is a common complication of diabetes which may lead to blindness. Early diagnosis can effectively prevent the deterioration of the disease and enable timely treatment. Ophthalmologists diagnose DR by observing ultra-wide optical coherence tomography angiography (UW-OCTA) images, which visualize unprecedented detail of DR lesions. In this paper, we propose an end-to-end task-specific network (TSNet) for joint DR grading and lesion segmentation of UW-OCTA images. Specifically, we design task-specific attention block to generate task-specific feature maps for respective segmentation and classification tasks. Furthermore, we devise task-specific fusion block to fuse the original task-specific feature map and augmented task-specific feature map for the following segmentation and classification decoders to generate DR lesion predictive mask and DR grading predictive result. Experiments on a public-available UW-OCTA dataset demonstrate that our model outperforms state-of-the-art (SOTA) multi-task models and achieves promising results on both DR lesion segmentation and DR grading classification tasks</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-023-03145-w</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2024-09, Vol.40 (9), p.5935-5946 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_3092489572 |
source | SpringerLink Journals |
subjects | Angiography Artificial Intelligence Automation Classification Computer Graphics Computer Science Decoders Deep learning Diabetes Diabetic retinopathy Disease Eye examinations Feature maps Image Processing and Computer Vision Image segmentation Lesions Medical diagnosis Medical imaging Medical research Optical Coherence Tomography Tomography Ultrasonic imaging |
title | TSNet: Task-specific network for joint diabetic retinopathy grading and lesion segmentation of ultra-wide optical coherence tomography angiography images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSNet:%20Task-specific%20network%20for%20joint%20diabetic%20retinopathy%20grading%20and%20lesion%20segmentation%20of%20ultra-wide%20optical%20coherence%20tomography%20angiography%20images&rft.jtitle=The%20Visual%20computer&rft.au=Tang,%20Jixue&rft.date=2024-09-01&rft.volume=40&rft.issue=9&rft.spage=5935&rft.epage=5946&rft.pages=5935-5946&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-023-03145-w&rft_dat=%3Cproquest_cross%3E3092489572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092489572&rft_id=info:pmid/&rfr_iscdi=true |