TSNet: Task-specific network for joint diabetic retinopathy grading and lesion segmentation of ultra-wide optical coherence tomography angiography images
Diabetic retinopathy (DR) is a common complication of diabetes which may lead to blindness. Early diagnosis can effectively prevent the deterioration of the disease and enable timely treatment. Ophthalmologists diagnose DR by observing ultra-wide optical coherence tomography angiography (UW-OCTA) im...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2024-09, Vol.40 (9), p.5935-5946 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diabetic retinopathy (DR) is a common complication of diabetes which may lead to blindness. Early diagnosis can effectively prevent the deterioration of the disease and enable timely treatment. Ophthalmologists diagnose DR by observing ultra-wide optical coherence tomography angiography (UW-OCTA) images, which visualize unprecedented detail of DR lesions. In this paper, we propose an end-to-end task-specific network (TSNet) for joint DR grading and lesion segmentation of UW-OCTA images. Specifically, we design task-specific attention block to generate task-specific feature maps for respective segmentation and classification tasks. Furthermore, we devise task-specific fusion block to fuse the original task-specific feature map and augmented task-specific feature map for the following segmentation and classification decoders to generate DR lesion predictive mask and DR grading predictive result. Experiments on a public-available UW-OCTA dataset demonstrate that our model outperforms state-of-the-art (SOTA) multi-task models and achieves promising results on both DR lesion segmentation and DR grading classification tasks |
---|---|
ISSN: | 0178-2789 1432-2315 |
DOI: | 10.1007/s00371-023-03145-w |