Elucidating performance degradation mechanisms in non-fullerene acceptor solar cells
Organic solar cells (OSCs) using non-fullerene acceptors (NFAs) afford exceptional photovoltaic performance metrics, however, their stability remains a significant challenge. Existing OSC stability studies focus on understanding degradation rate-performance relationships, improving interfacial layer...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (32), p.21213-21229 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic solar cells (OSCs) using non-fullerene acceptors (NFAs) afford exceptional photovoltaic performance metrics, however, their stability remains a significant challenge. Existing OSC stability studies focus on understanding degradation rate-performance relationships, improving interfacial layers, and suppressing degradative chemical reaction pathways. Nevertheless, there is a knowledge gap concerning how such degradation affects crystal structure, electronic states, and recombination dynamics that ultimately impact NFA performance. Here we seek a quantitative relationship between OSC metrics and blend morphology, trap density of states, charge carrier mobility, and recombination processes during the UV-light-induced degradation of
PBDB-TF:Y6
inverted solar cells as the PCE (power conversion efficiency) falls from 17.3 to 5.0%. Temperature-dependent electrical and impedance measurements reveal deep traps at 0.48 eV below the conduction band that are unaffected by
Y6
degradation, and shallow traps at 0.15 eV below the conduction band that undergo a three-fold density of states increase at the PCE degradation onset. Computational analysis correlates vinyl oxidation with a new trap state at 0.25 eV below the conduction band, likely involving charge transfer from the UV-absorbing ZnO electron transport layer.
In situ
integrated photocurrent analysis and transient absorption spectroscopy reveal that these traps lower electron mobility and increase recombination rates during degradation. Grazing-incidence wide-angle X-ray scattering and computational analysis reveal that the degraded
Y6
crystallite morphology is largely preserved but that |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/d4ta03501a |