Efficient VLSI architectures of lifting based 3D discrete wavelet transform

Discrete wavelet transform (DWT) is widely used in the image and video compression due to its high compression ratio and resolution. This study proposes efficient very large scale integration (VLSI) architectures of lifting based 3D-DWT using (5,3) and (9,7) Daubechies wavelets. The advantage of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chronic diseases and translational medicine 2020-11, Vol.14 (6), p.247-255
1. Verfasser: Basiri, M. Mohamed Asan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Discrete wavelet transform (DWT) is widely used in the image and video compression due to its high compression ratio and resolution. This study proposes efficient very large scale integration (VLSI) architectures of lifting based 3D-DWT using (5,3) and (9,7) Daubechies wavelets. The advantage of these proposed architectures is the absence of storage buffer in between the row, column, and temporal processes. Also, five and nine numbers of frames of the 3D signal can be processed in parallel using the proposed (5,3) and (9,7) lifting based DWTs, respectively. Due to this parallelism and the elimination of storage buffers, the throughput of the proposed design is greater than other existing techniques. The authors have implemented all the existing and proposed 3D-DWTs using 45 nm CMOS library with Cadence and Artix-7 FPGA with Xilinx Vivado. The synthesis results show that the proposed designs achieve significant improvement in throughput than various existing designs. For example, the proposed (9,7) lifting based 3D-DWT achieves 85.4% of improvement in the throughput than the conventional design.
ISSN:1751-8601
1751-861X
2095-882X
1751-861X
2589-0514
DOI:10.1049/iet-cdt.2020.0038