An augmented Lagrangian preconditioner for the control of the Navier--Stokes equations

We address the solution of the distributed control problem for the steady, incompressible Navier--Stokes equations. We propose an inexact Newton linearization of the optimality conditions. Upon discretization by a finite element scheme, we obtain a sequence of large symmetric linear systems of saddl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Leveque, Santolo, Benzi, Michele, Farrell, Patrick E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the solution of the distributed control problem for the steady, incompressible Navier--Stokes equations. We propose an inexact Newton linearization of the optimality conditions. Upon discretization by a finite element scheme, we obtain a sequence of large symmetric linear systems of saddle-point type. We use an augmented Lagrangian-based block triangular preconditioner in combination with the flexible GMRES method at each Newton step. The preconditioner is applied inexactly via a suitable multigrid solver. Numerical experiments indicate that the resulting method appears to be fairly robust with respect to viscosity, mesh size, and the choice of regularization parameter when applied to 2D problems.
ISSN:2331-8422