Properties of Gel Polymer Electrolyte Based Poly(Vinylidine Fluoride-сo-Hexafluoropropylene) (PVdF-HFP), Lithium Perchlorate (LiClO4) and 1-Butyl-3-Methylimmidazoliumhexafluorophosphate [PF6]
This study reported the preparation and characterization of gel polymer electrolyte (GPE) using poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP), lithium perchlorate (LiClO4) and 1-butyl-3-metilimmidazoliumhexafluorophosphate [PF6]. The GPE were prepared by solution casting technique. [B...
Gespeichert in:
Veröffentlicht in: | Solid state phenomena 2021-05, Vol.317, p.434-439 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study reported the preparation and characterization of gel polymer electrolyte (GPE) using poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP), lithium perchlorate (LiClO4) and 1-butyl-3-metilimmidazoliumhexafluorophosphate [PF6]. The GPE were prepared by solution casting technique. [Bmim] [PF6] ionic liquid is used as an additive for the purpose of increasing the ionic conductivity of GPE. Morphological analysis showed that the electrolyte gel polymer sample had a smooth and flat surface with the addition of [Bmim] [PF6] and no phase separation effect was observed. This shows the compatibility between PVdF-HFP and [Bmim] [PF6]. ATR-FTIR analysis showed that C-F bond related peaks experienced peak changes in terms of intensity and peak shifting. This proves the interaction of the imidazolium ion with the fluorine atom through the formation of coordinate bonds. Ionic conductivity analysis showed that PVdF-HFP-[Bmim][PF6] samples reached a maximum room temperature ionic conductivity value of 2.44 × 10-4 S cm-1 at 60 wt.% [Bmim] [PF6]. When 20 wt.% of LiClO4 added to the system, the ionic conductivity increased one magnitude order to 2.20 × 10-3 S cm-1. |
---|---|
ISSN: | 1012-0394 1662-9779 1662-9779 |
DOI: | 10.4028/www.scientific.net/SSP.317.434 |