Research on the Influence of the Heat Treatment Temperature on the Cavitation Behavior of the Aluminum Alloy 2017 A
The good mechanical properties of aluminum alloy 2017 A have determined its use in a wide range of applications in which cavitational solocitations occur, such as hydraulic actuation installations, heat engine blocks, boat propellers and sloops, pumps in the cooling system of thermal engines, wings...
Gespeichert in:
Veröffentlicht in: | Solid state phenomena 2023-09, Vol.349, p.55-62 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The good mechanical properties of aluminum alloy 2017 A have determined its use in a wide range of applications in which cavitational solocitations occur, such as hydraulic actuation installations, heat engine blocks, boat propellers and sloops, pumps in the cooling system of thermal engines, wings and ogives of airplanes. Currently, research is focused on the development of procedures for improving the resistance to cavitational erosion of these materials. This paper presents the results of the research on the cavitation erosion behavior of the material subjected to thermal aging treatment at different temperatures of 140 °C and 180 °C respectively and a constant holding time of 12 hours. The research was carried out according to the ASTM G32-2016 norms, on a vibrating device with piezoceramic crystals from the Cavitation Laboratory of the Polytechnic University of Timisoara. The research results, based on characteristic curves, mechanical properties, micro and macro structural images, showed that the sample kept for 12 h at a temperature of 180 °C is weaker than the control sample, during the sample time kept for 12 h at a temperature of 140 °C, has a small increase, even if, compared to the control sample (without heat treatment), the hardness is lower. |
---|---|
ISSN: | 1012-0394 1662-9779 1662-9779 |
DOI: | 10.4028/p-T5fHOG |