A Rapid Synthesis of Zeolitic Imidazolate Framework-14 Cobalt (ZIF-14 Co) for Surface Modification of LiFePO4 as Lithium‑Ion Battery Cathode Material

The main limitation of LiFePO4 (LFP) as a cathode material for lithium-ion battery (LIB) is its poor rate performance due to its low electronic conductivity values. At present, there are three main efforts being intensively carried out to overcome this: cation doping, crystal morphology adjustment,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2023-07, Vol.950, p.31-38
Hauptverfasser: Edwin, Rudiawan, Eddy, Diana Rakhmawaty, Rahayu, Iman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main limitation of LiFePO4 (LFP) as a cathode material for lithium-ion battery (LIB) is its poor rate performance due to its low electronic conductivity values. At present, there are three main efforts being intensively carried out to overcome this: cation doping, crystal morphology adjustment, and LFP surface modification. Surface modification of LFPs has become a major concern in efforts to improve battery performance. The use of zeolitic imidazolate frameworks 8 (ZIF-8) and 67 (ZIF 67) as N-doped C sources for surface modification of LIB cathodes carried out in several studies has shown an improvement in the electrochemical performance of LIB. However, the thermal, solvothermal and chemical stability of ZIF-8 and ZIF-67, which adopt the sodalite (SOD) topology, is still not enough for this purpose. Zeolitic imidazolate frameworks 14 (ZIF-14), which is homologous to ZIF-8 and ZIF-67 with its crystals adopting analcime (ANA) topology, has better thermal, solvothermal, and chemical stability than ZIF-8 and ZIF-67. Apart from its topology, ZIF-14 cobalt (ZIF-14 Co) can be synthesized rapidly in a water-based system at room temperature, so that its use becomes more effective and efficient. This paper will describe the synthesis and characterization procedure of ZIF-14 Co for use as a modification material for the cathode surface of LIB.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/p-XTYu6W