Manufacture of Defined Residual Stress Distributions in the Friction-Spinning Process: Driven Tool and Subsequent Flow-Forming
Friction-spinning as an innovative incremental forming process enables large degrees of deformation in the field of tube and sheet metal forming due to a self-induced heat generation in the forming zone. This paper presents a new tool and process design with a driven tool for the targeted adjustment...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2022-07, Vol.926, p.683-689 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Friction-spinning as an innovative incremental forming process enables large degrees of deformation in the field of tube and sheet metal forming due to a self-induced heat generation in the forming zone. This paper presents a new tool and process design with a driven tool for the targeted adjustment of residual stress distributions in the friction-spinning process. Locally adapted residual stress depth distributions are intended to improve the functionality of the friction-spinning workpieces, e.g. by delaying failure or triggering it in a defined way. The new process designs with the driven tool and a subsequent flow-forming operation are investigated regarding the influence on the residual stress depth distributions compared to those of standard friction-spinning process. Residual stress depth distributions are measured with the incremental hole-drilling method. The workpieces (tubular part with a flange) are manufactured using heat-treatable 3.3206 (EN-AW 6060 T6) tubular profiles. It is shown that the residual stress depth distributions change significantly due to the new process designs, which offers new potentials for the targeted adjustment of residual stresses that serve to improve the workpiece properties. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/p-3rk19y |