The Impact of Nanomaterials on Fabrication Silicon Solar Cells by Pulsed Laser Deposition

Nanocarbon structures such as graphene (GR), single-walled carbon nanotubes (SWCNTs) as well as the multi-walled carbon nanotubes (MWCNTs) were deposited on crystalline n-type silicon wafers to fabricate nanoCarbon-Si solar cells. Nanocarbon films deposited on glass and porous silicon (PS) via pulse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano hybrids and composites 2020-11, Vol.30, p.41-54
Hauptverfasser: Farman, Shelan A., Aadim, Kadhim Abdulwahid, Ibrahim, Muayed K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocarbon structures such as graphene (GR), single-walled carbon nanotubes (SWCNTs) as well as the multi-walled carbon nanotubes (MWCNTs) were deposited on crystalline n-type silicon wafers to fabricate nanoCarbon-Si solar cells. Nanocarbon films deposited on glass and porous silicon (PS) via pulse laser deposition (PLD) with the use of Q-Switching Nd: YAG laser with λ=1064 (nm), Energy (E)=700 (mJ), Repetition rate (f)=6 (HZ) under vacuum condition with 2.5×10-2 (mbar). The surface morphology, structure, and optical Nanocarbon thin films have been examined with the use of X-ray Diffraction (XRD), Atomic force microscope (AFM), FTIR spectrophotometer and UV-visible. In addition, the power conversion efficiency that is related to the prepared solar cells is estimated through J-V characterization. The PCE of all Nanocarbon/PS follows the orders; SWCNTs/PS < MWCNTs/PS< GR/PS.
ISSN:2297-3370
2297-3400
2297-3400
DOI:10.4028/www.scientific.net/NHC.30.41