Innovative Surface Technologies to Create Protective Functional Coatings on Light Metal Alloys

Weight reduction in automotive and aerospace components can improve energy efficiency, reduce emissions, and increase performance. The adoption of light metals such as aluminium, magnesium and titanium alloys, is essential to these performance improvements; however, these alloys require protective s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2021-02, Vol.876, p.31-38
Hauptverfasser: Dong, Jun Zhe, Goode, Chris, Hou, Feng Yan, Mardon, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Weight reduction in automotive and aerospace components can improve energy efficiency, reduce emissions, and increase performance. The adoption of light metals such as aluminium, magnesium and titanium alloys, is essential to these performance improvements; however, these alloys require protective surface coatings to prevent corrosion and resulting mechanical failures during service life. Traditional protective coatings for light-weight materials can be costly in terms of energy, raw materials, and environmental sustainability. New durable coating approaches are required to allow light-weight materials to be fully exploited in high performance applications. Novel Cirrus HybridTM coatings, a recent innovation in surface finishing, can protect a wide range of light metal alloy components using a sustainable, non-toxic process. Cirrus HybridTM coating technology deposits a thin-film, inorganic coating that bonds tightly to the light-metal alloy substrate. The process is energy efficient, does not rely on hazardous chemicals, and is up to 5 times thinner than traditional coatings for light metals. A Cirrus HybridTM coating provides excellent anti-corrosion, scratch, and wear properties, along with superior tribological, electrical, and optical performance. This paper updates the art of these innovative new coating technologies for reducing weight in industrial components without compromising functionality or performance.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.876.31