Facile Hydrothermal Fabrication of Eu Doped Alumina for Potential Bioluminescent Imaging and Drug Delivery System

The aim of this study is to investigate the photoluminescence (PL) properties of europium (Eu) doped alumina as potential platform for simultaneous bio Imaging and drug delivery. Synthesis of Eu doped alumina is done by a facile two step method. In the first stage, hydrothermal synthesis is used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2021-02, Vol.875, p.359-365
Hauptverfasser: Khurshid, Ahmat, Ul Hassan, Syed Mujtaba, Shah, Attaullah, Ahmad, Jamil, Sultan, Numrah, Ali, Zahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study is to investigate the photoluminescence (PL) properties of europium (Eu) doped alumina as potential platform for simultaneous bio Imaging and drug delivery. Synthesis of Eu doped alumina is done by a facile two step method. In the first stage, hydrothermal synthesis is used to prepare the Eu doped ammonium aluminum carbonate hydroxide which is then calcined to get a crystalline Eu doped alumina. Structural characterization of the prepared sample is done through XRD and SEM. Photoluminescence spectroscopy is performed in order the study the PL response. The SEM images of the Eu doped sample revealed whisker shaped morphology, the porosity in the inter and intra whisker region is beneficial for the high drug loading capacity. The length of the bundle after annealing was about 5 µm with the bundle diameter of 0.45 µm. XRD patterns of the prepared sample has sharp peaks, showing a high degree of crystallinity corresponding to the α-alumina phase. Finally PL response was checked at an excitation wavelength of 393 nm. A dominant peak was observed at a wavelength of 613 nm corresponding to the 5D0 to 7F2 transition.The3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay confirms the cell viability of more than 100% at even a concentration of 500 nano molar alumina in phosphate-buffered saline (PBS). These results show that the Eu doped alumina having optimum PL response, high biocompatibility and drug loading capacity which makes it a promising candidate for theranostic applications.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.875.359