Modeling and Analysis of Surface Roughness with Statistical and Soft Computing Approach
The objective of this study focuses on developing empirical prediction models using response regression analysis and fuzzy-logic. These models latter can be used to predict surface roughness according to technological variables. The values of surface roughness produced by these models are compared w...
Gespeichert in:
Veröffentlicht in: | Advances in Science and Technology 2021-05, Vol.106, p.109-115 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this study focuses on developing empirical prediction models using response regression analysis and fuzzy-logic. These models latter can be used to predict surface roughness according to technological variables. The values of surface roughness produced by these models are compared with experimental results. Experimental investigation has been carried out by using scientific composite factorial design on precision lathe machine with tungsten carbide inserts. Surface roughness measured at end of each experimental trial (three times), to get the effect of machining conditions and tool geometry on the surface finish values. Research showed that soft computing fuzzy logic model developed produces smaller error and has satisfactory results as compared to response regression model during machining. |
---|---|
ISSN: | 1662-8969 1662-0356 |
DOI: | 10.4028/www.scientific.net/AST.106.109 |