Facile fabrication of binder-free carbon nanotube–carbon nanocoil hybrid films for anodes of lithium-ion batteries
The electrochemical performance of lithium-ion batteries (LIBs) depends dramatically on the composition, microstructure, and morphology of anode materials. The development of carbon nanotube (CNT)-based anode materials is of great significance. However, the easy agglomeration and winding of CNTs hin...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2024, Vol.28 (9), p.3325-3335 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrochemical performance of lithium-ion batteries (LIBs) depends dramatically on the composition, microstructure, and morphology of anode materials. The development of carbon nanotube (CNT)-based anode materials is of great significance. However, the easy agglomeration and winding of CNTs hinder the embedding of lithium ions (Li
+
), leading to the failure of the battery at a high rate when the CNT film is solely used as anode. Herein, binder-free hybrid films of CNTs and carbon nanocoils (CNCs) were fabricated by the facile vacuum-assisted filtration method. The uniform dispersion of helical CNCs in the densely compacted CNTs results in a large number of passways and space to achieve rapid charge transmission. It is found that the storage capacities of Li
+
are strongly dependent on the mixing ratio of CNTs and CNCs. The highest storage capacities of Li
+
are obtained in the CNT-CNC film at a mixing ratio of 4:1. The CNT-CNC film electrode still has a charge and discharge capacity of 300 mAh/g even at a high specific current of 800 mA/g, while the CNT film electrode has 150 mAh/g. These results indicate that the CNT-CNC hybrid film is a promising material to be used as binder-free anodes for LIBs. |
---|---|
ISSN: | 1432-8488 1433-0768 |
DOI: | 10.1007/s10008-024-05906-6 |