A Fitted Approximate Method for Solving Singularly Perturbed Volterra–Fredholm Integrodifferential Equations with Integral Boundary Condition

We consider a novel numerical approach for solving boundary-value problems for the second-order Volterra-Fredholm integrodifferential equation with layer behavior and an integral boundary condition. A finite-difference scheme is proposed on suitable Shishkin-type mesh to obtain an approximate soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2024, Vol.76 (1), p.122-140
Hauptverfasser: Gunes, Baransel, Cakir, Musa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a novel numerical approach for solving boundary-value problems for the second-order Volterra-Fredholm integrodifferential equation with layer behavior and an integral boundary condition. A finite-difference scheme is proposed on suitable Shishkin-type mesh to obtain an approximate solution of the presented problem. It is proved that the method is first-order convergent in the discrete maximum norm. Two numerical examples are included to show the efficiency of the method.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-024-02312-z