A Fitted Approximate Method for Solving Singularly Perturbed Volterra–Fredholm Integrodifferential Equations with Integral Boundary Condition
We consider a novel numerical approach for solving boundary-value problems for the second-order Volterra-Fredholm integrodifferential equation with layer behavior and an integral boundary condition. A finite-difference scheme is proposed on suitable Shishkin-type mesh to obtain an approximate soluti...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2024, Vol.76 (1), p.122-140 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a novel numerical approach for solving boundary-value problems for the second-order Volterra-Fredholm integrodifferential equation with layer behavior and an integral boundary condition. A finite-difference scheme is proposed on suitable Shishkin-type mesh to obtain an approximate solution of the presented problem. It is proved that the method is first-order convergent in the discrete maximum norm. Two numerical examples are included to show the efficiency of the method. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-024-02312-z |