Analytic Nullstellensätze and the model theory of valued fields
We present a uniform framework for establishing Nullstellensätze for power series rings using quantifier elimination results for valued fields. As an application, we obtain Nullstellensätze for p$p$‐adic power series (both formal and convergent) analogous to Rückert's complex and Risler's...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2024-08, Vol.297 (8), p.2873-2917 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a uniform framework for establishing Nullstellensätze for power series rings using quantifier elimination results for valued fields. As an application, we obtain Nullstellensätze for p$p$‐adic power series (both formal and convergent) analogous to Rückert's complex and Risler's real Nullstellensatz, as well as a p$p$‐adic analytic version of Hilbert's 17th Problem. Analogous statements for restricted power series, both real and p$p$‐adic, are also considered. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202200280 |