Analytic Nullstellensätze and the model theory of valued fields

We present a uniform framework for establishing Nullstellensätze for power series rings using quantifier elimination results for valued fields. As an application, we obtain Nullstellensätze for p$p$‐adic power series (both formal and convergent) analogous to Rückert's complex and Risler's...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2024-08, Vol.297 (8), p.2873-2917
Hauptverfasser: Aschenbrenner, Matthias, Srhir, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a uniform framework for establishing Nullstellensätze for power series rings using quantifier elimination results for valued fields. As an application, we obtain Nullstellensätze for p$p$‐adic power series (both formal and convergent) analogous to Rückert's complex and Risler's real Nullstellensatz, as well as a p$p$‐adic analytic version of Hilbert's 17th Problem. Analogous statements for restricted power series, both real and p$p$‐adic, are also considered.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.202200280