A Hybrid Deep Learning Model to Estimate the Future Electricity Demand of Sustainable Cities

Rapid population growth, economic growth, and technological developments in recent years have led to a significant increase in electricity consumption. Therefore, the estimation of electrical energy demand is crucial for the planning of electricity generation and consumption in cities. This study pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-08, Vol.16 (15), p.6503
Hauptverfasser: Yıldız Doğan, Gülay, Aksoy, Aslı, Öztürk, Nursel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rapid population growth, economic growth, and technological developments in recent years have led to a significant increase in electricity consumption. Therefore, the estimation of electrical energy demand is crucial for the planning of electricity generation and consumption in cities. This study proposes a hybrid deep learning model that combines convolutional neural network (CNN) and long short-term memory (LSTM) techniques, both of which are deep learning techniques, to estimate electrical load demand. A hybrid deep learning model and LSTM model were applied to a dataset containing hourly electricity consumption and meteorological information of a city in Türkiye from 2017 to 2021. The results were evaluated using mean absolute percent error (MAPE), root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) metrics. The proposed CNN-LSTM hybrid model was compared to the LSTM model, with lower MAPE, MAE, and RMSE values. Furthermore, the CNN-LSTM model exhibited superior prediction performance with an R2 value of 0.8599 compared to the LSTM model with an R2 value of 0.8086. These results demonstrate the effectiveness of the proposed deep learning model in accurately estimating future electrical load demand to plan electricity generation for sustainable cities.
ISSN:2071-1050
2071-1050
DOI:10.3390/su16156503