Development and Sensitivity Analysis of an Improved Harmony Search Algorithm with a Multiple Memory Structure for Large-Scale Optimization Problems in Water Distribution Networks
The continuous supply of drinking water for human life is essential to ensure the sustainability of cities, society, and the environment. At a time when water scarcity is worsening due to climate change, the construction of an optimized water supply infrastructure is necessary. In this study, an imp...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-08, Vol.16 (15), p.6689 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The continuous supply of drinking water for human life is essential to ensure the sustainability of cities, society, and the environment. At a time when water scarcity is worsening due to climate change, the construction of an optimized water supply infrastructure is necessary. In this study, an improved version of the Harmony Search Algorithm (HSA), named the Maisonette-type Harmony Search Algorithm (MTHSA), was developed. Unlike the HSA, the MTHSA has a two-floor structure, which increases the optimizing efficiency by employing multiple explorations on the first floor and additional exploitations of excellent solutions. Parallel explorations enhance the ability in terms of exploration (global search), which is the tendency to uniformly explore the entire search space. Additional exploitations among excellent solutions also enhance the ability of local searches (effective exploitation), which is the intensive exploration of solutions that seem to have high possibilities. Following the development of the improved algorithm, it was applied to water distribution networks in order to verify its efficiency, and the numerical results were analyzed. Through the considered applications, the improved algorithm is shown to be highly efficient when applied to large-scale optimization problems with large numbers of decision variables, as shown in comparison with the considered optimizers. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su16156689 |