Astroturfing as a strategy for manipulating public opinion on Twitter during the pandemic in Spain

This work aims to establish whether astroturfing was used during the Covid-19 pandemic to manipulate Spanish public opinion through Twitter. This study analyzes tweets published in Spanish and geolocated in the Philippines, and its first objective is to determine the existence of an organized networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:El profesional de la informacion 2022-05, Vol.31 (3), p.e310310
Hauptverfasser: Arce-García, Sergio, Said-Hung, Elías, Mottareale, Daría
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work aims to establish whether astroturfing was used during the Covid-19 pandemic to manipulate Spanish public opinion through Twitter. This study analyzes tweets published in Spanish and geolocated in the Philippines, and its first objective is to determine the existence of an organized network that directs its messages mainly towards Spain. To determine the non-existence of a random network, a preliminary collection of 1,496,596 tweets was carried out. After determining its 14 main clusters, 280 users with a medium-low profile of participation and micro- and nano-influencer traits were randomly selected and followed for 103 days, for a total of 309,947 tweets. Network science, text mining, sentiment and emotion, and bot probability analyses were performed using Gephi and R. Their network structure suggests an ultra-small-world phenomenon, which would determine the existence of a possible organized network that tries not to be easily identifiable. The data analyzed confirm a digital communication scenario in which astroturfing is used as a strategy aimed at manipulating public opinion through non-influencers (cybertroops). These users create and disseminate content with proximity and closeness to different groups of public opinion, mixing topics of general interest with disinformation or polarized content.
ISSN:1386-6710
1699-2407
DOI:10.3145/epi.2022.may.10