Minimal Laminations and Level Sets of 1-Harmonic Functions

We collect several results concerning regularity of minimal laminations, and governing the various modes of convergence for sequences of minimal laminations. We then apply this theory to prove that a function has locally least gradient (is 1-harmonic) iff its level sets are a minimal lamination; thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-10, Vol.34 (10), Article 309
1. Verfasser: Backus, Aidan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We collect several results concerning regularity of minimal laminations, and governing the various modes of convergence for sequences of minimal laminations. We then apply this theory to prove that a function has locally least gradient (is 1-harmonic) iff its level sets are a minimal lamination; this resolves an open problem of Daskalopoulos and Uhlenbeck.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01758-8