Complexity of 2-Rainbow Total Domination Problem

In this paper, we extend the findings of recent studies on k -rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2024-09, Vol.47 (5), Article 155
Hauptverfasser: Šumenjak, Tadeja Kraner, Tepeh, Aleksandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 47
creator Šumenjak, Tadeja Kraner
Tepeh, Aleksandra
description In this paper, we extend the findings of recent studies on k -rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the k -rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the k -rainbow total domination number of the corona product G ∗ H , provided that H has enough vertices.
doi_str_mv 10.1007/s40840-024-01747-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3090926551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090926551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d1314fd3958be7d6eef5c1ec4fcdc2ab9647b94a88be9816bd10eaf6192a57333</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWNb9A54KnqOT7_Qo6ycsKLKeQ9om0qVt1qSL7r83WsGbc5nDPO878CB0TuCSAKirxEFzwEA5BqK4wvoIFZRowJyCPEYFECqxVCBO0TKlLeQRkkpKCgSrMOx699lNhzL4kuIX2411-Cg3YbJ9eROGbrRTF8byOYa6d8MZOvG2T275uxfo9e52s3rA66f7x9X1GjcUYMItYYT7llVC10610jkvGuIa7pu2obauJFd1xa3O50oTWbcEnPWSVNQKxRhboIu5dxfD-96lyWzDPo75pWFQQUWlECRTdKaaGFKKzptd7AYbD4aA-ZZjZjkmyzE_cozOITaHUobHNxf_qv9JfQHGd2Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090926551</pqid></control><display><type>article</type><title>Complexity of 2-Rainbow Total Domination Problem</title><source>Springer Nature - Complete Springer Journals</source><creator>Šumenjak, Tadeja Kraner ; Tepeh, Aleksandra</creator><creatorcontrib>Šumenjak, Tadeja Kraner ; Tepeh, Aleksandra</creatorcontrib><description>In this paper, we extend the findings of recent studies on k -rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the k -rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the k -rainbow total domination number of the corona product G ∗ H , provided that H has enough vertices.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-024-01747-8</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Apexes ; Applications of Mathematics ; Complexity ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2024-09, Vol.47 (5), Article 155</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d1314fd3958be7d6eef5c1ec4fcdc2ab9647b94a88be9816bd10eaf6192a57333</cites><orcidid>0000-0002-2321-6766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-024-01747-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-024-01747-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Šumenjak, Tadeja Kraner</creatorcontrib><creatorcontrib>Tepeh, Aleksandra</creatorcontrib><title>Complexity of 2-Rainbow Total Domination Problem</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>In this paper, we extend the findings of recent studies on k -rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the k -rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the k -rainbow total domination number of the corona product G ∗ H , provided that H has enough vertices.</description><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Complexity</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMoWNb9A54KnqOT7_Qo6ycsKLKeQ9om0qVt1qSL7r83WsGbc5nDPO878CB0TuCSAKirxEFzwEA5BqK4wvoIFZRowJyCPEYFECqxVCBO0TKlLeQRkkpKCgSrMOx699lNhzL4kuIX2411-Cg3YbJ9eROGbrRTF8byOYa6d8MZOvG2T275uxfo9e52s3rA66f7x9X1GjcUYMItYYT7llVC10610jkvGuIa7pu2obauJFd1xa3O50oTWbcEnPWSVNQKxRhboIu5dxfD-96lyWzDPo75pWFQQUWlECRTdKaaGFKKzptd7AYbD4aA-ZZjZjkmyzE_cozOITaHUobHNxf_qv9JfQHGd2Xg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Šumenjak, Tadeja Kraner</creator><creator>Tepeh, Aleksandra</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2321-6766</orcidid></search><sort><creationdate>20240901</creationdate><title>Complexity of 2-Rainbow Total Domination Problem</title><author>Šumenjak, Tadeja Kraner ; Tepeh, Aleksandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d1314fd3958be7d6eef5c1ec4fcdc2ab9647b94a88be9816bd10eaf6192a57333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Complexity</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šumenjak, Tadeja Kraner</creatorcontrib><creatorcontrib>Tepeh, Aleksandra</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šumenjak, Tadeja Kraner</au><au>Tepeh, Aleksandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of 2-Rainbow Total Domination Problem</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>47</volume><issue>5</issue><artnum>155</artnum><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>In this paper, we extend the findings of recent studies on k -rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the k -rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the k -rainbow total domination number of the corona product G ∗ H , provided that H has enough vertices.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s40840-024-01747-8</doi><orcidid>https://orcid.org/0000-0002-2321-6766</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2024-09, Vol.47 (5), Article 155
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_3090926551
source Springer Nature - Complete Springer Journals
subjects Apexes
Applications of Mathematics
Complexity
Graph theory
Graphs
Mathematics
Mathematics and Statistics
title Complexity of 2-Rainbow Total Domination Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%202-Rainbow%20Total%20Domination%20Problem&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=%C5%A0umenjak,%20Tadeja%20Kraner&rft.date=2024-09-01&rft.volume=47&rft.issue=5&rft.artnum=155&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-024-01747-8&rft_dat=%3Cproquest_cross%3E3090926551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090926551&rft_id=info:pmid/&rfr_iscdi=true