Complexity of 2-Rainbow Total Domination Problem
In this paper, we extend the findings of recent studies on k -rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity res...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2024-09, Vol.47 (5), Article 155 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we extend the findings of recent studies on
k
-rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the
k
-rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the
k
-rainbow total domination number of the corona product
G
∗
H
, provided that
H
has enough vertices. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-024-01747-8 |