Complexity of 2-Rainbow Total Domination Problem

In this paper, we extend the findings of recent studies on k -rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2024-09, Vol.47 (5), Article 155
Hauptverfasser: Šumenjak, Tadeja Kraner, Tepeh, Aleksandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we extend the findings of recent studies on k -rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the k -rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the k -rainbow total domination number of the corona product G ∗ H , provided that H has enough vertices.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-024-01747-8