Improving the Otsu method for MRA image vessel extraction via resampling and ensemble learning

Accurate extraction of vessels plays an important role in assisting diagnosis, treatment, and surgical planning. The Otsu method has been used for extracting vessels in medical images. However, blood vessels in magnetic resonance angiography (MRA) image are considered as a sparse distribution. Pixel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Healthcare technology letters 2019-08, Vol.6 (4), p.115-120
1. Verfasser: Chang, Yuchou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate extraction of vessels plays an important role in assisting diagnosis, treatment, and surgical planning. The Otsu method has been used for extracting vessels in medical images. However, blood vessels in magnetic resonance angiography (MRA) image are considered as a sparse distribution. Pixels on vessels in MRA image are considered as an imbalanced data in classification of vessels and non-vessel tissues. To extract vessels accurately, a novel method using resampling technique and ensemble learning is proposed for solving the imbalanced classification problem. Each pixel is sampled multiple times through multiple local patches within the image. Then, vessel or non-vessel tissue is determined by the ensemble voting mechanism via a p-tile algorithm. Experimental results show that the proposed method is able to outperform the traditional Otsu method by extracting vessels in MRA images more accurately.
ISSN:2053-3713
2053-3713
DOI:10.1049/htl.2018.5031