Image Clustering: An Unsupervised Approach to Categorize Visual Data in Social Science Research
Automated image analysis has received increasing attention in social scientific research, yet existing scholarship has mostly covered the application of supervised learning to classify images into predefined categories. This study focuses on the task of unsupervised image clustering, which aims to a...
Gespeichert in:
Veröffentlicht in: | Sociological methods & research 2024-08, Vol.53 (3), p.1534-1587 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1587 |
---|---|
container_issue | 3 |
container_start_page | 1534 |
container_title | Sociological methods & research |
container_volume | 53 |
creator | Zhang, Han Peng, Yilang |
description | Automated image analysis has received increasing attention in social scientific research, yet existing scholarship has mostly covered the application of supervised learning to classify images into predefined categories. This study focuses on the task of unsupervised image clustering, which aims to automatically discover categories from unlabelled image data. We first review the steps to perform image clustering and then focus on one key challenge in this task—finding intermediate representations of images. We present several methods of extracting intermediate image representations, including the bag-of-visual-words model, self-supervised learning, and transfer learning (in particular, feature extraction with pretrained models). We compare these methods using various visual datasets, including images related to protests in China from Weibo, images about climate change on Instagram, and profile images of the Russian Internet Research Agency on Twitter. In addition, we propose a systematic way to interpret and validate clustering solutions. Results show that transfer learning significantly outperforms the other methods. The dataset used in the pretrained model critically determines what categories the algorithms can discover. |
doi_str_mv | 10.1177/00491241221082603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3089903064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00491241221082603</sage_id><sourcerecordid>3089903064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-3b3e84a844f26cbefce7a05d95574c8a73024b4a542b6dcd083f8479eb2391de3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz6mz_5KNtxKtFgqCtV7DZjNpt7RJ3E0E_fSmVPAgnoZhfu_N4xFyzWDCWJLcAsiUcck4Z6B5DOKEjJhSPNI8ladkdLhHB-CcXISwBWA8ATEi-Xxv1kizXR869K5e39FpTVd16Fv0Hy5gSadt6xtjN7RraGY6XDfefSF9c6E3O3pvOkNdTZeNdcO6tA5ri_QFAxpvN5fkrDK7gFc_c0xWs4fX7ClaPD_Os-kiskKpLhKFQC2NlrLisS2wspgYUGWqVCKtNokALgtplORFXNoStKi0TFIsuEhZiWJMbo6-Q9b3HkOXb5ve18PLXIBOUxAQy4FiR8r6JgSPVd56tzf-M2eQH3rM__Q4aCZHTRiK-nX9X_ANmT1xpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089903064</pqid></control><display><type>article</type><title>Image Clustering: An Unsupervised Approach to Categorize Visual Data in Social Science Research</title><source>Sociological Abstracts</source><source>SAGE Complete A-Z List</source><creator>Zhang, Han ; Peng, Yilang</creator><creatorcontrib>Zhang, Han ; Peng, Yilang</creatorcontrib><description>Automated image analysis has received increasing attention in social scientific research, yet existing scholarship has mostly covered the application of supervised learning to classify images into predefined categories. This study focuses on the task of unsupervised image clustering, which aims to automatically discover categories from unlabelled image data. We first review the steps to perform image clustering and then focus on one key challenge in this task—finding intermediate representations of images. We present several methods of extracting intermediate image representations, including the bag-of-visual-words model, self-supervised learning, and transfer learning (in particular, feature extraction with pretrained models). We compare these methods using various visual datasets, including images related to protests in China from Weibo, images about climate change on Instagram, and profile images of the Russian Internet Research Agency on Twitter. In addition, we propose a systematic way to interpret and validate clustering solutions. Results show that transfer learning significantly outperforms the other methods. The dataset used in the pretrained model critically determines what categories the algorithms can discover.</description><identifier>ISSN: 0049-1241</identifier><identifier>EISSN: 1552-8294</identifier><identifier>DOI: 10.1177/00491241221082603</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Classification ; Climate change ; Clustering ; Extraction ; Imagery ; Learning ; Social research</subject><ispartof>Sociological methods & research, 2024-08, Vol.53 (3), p.1534-1587</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-3b3e84a844f26cbefce7a05d95574c8a73024b4a542b6dcd083f8479eb2391de3</citedby><cites>FETCH-LOGICAL-c355t-3b3e84a844f26cbefce7a05d95574c8a73024b4a542b6dcd083f8479eb2391de3</cites><orcidid>0000-0003-2912-8780 ; 0000-0001-7711-9518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/00491241221082603$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/00491241221082603$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21810,27915,27916,33765,43612,43613</link.rule.ids></links><search><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Peng, Yilang</creatorcontrib><title>Image Clustering: An Unsupervised Approach to Categorize Visual Data in Social Science Research</title><title>Sociological methods & research</title><description>Automated image analysis has received increasing attention in social scientific research, yet existing scholarship has mostly covered the application of supervised learning to classify images into predefined categories. This study focuses on the task of unsupervised image clustering, which aims to automatically discover categories from unlabelled image data. We first review the steps to perform image clustering and then focus on one key challenge in this task—finding intermediate representations of images. We present several methods of extracting intermediate image representations, including the bag-of-visual-words model, self-supervised learning, and transfer learning (in particular, feature extraction with pretrained models). We compare these methods using various visual datasets, including images related to protests in China from Weibo, images about climate change on Instagram, and profile images of the Russian Internet Research Agency on Twitter. In addition, we propose a systematic way to interpret and validate clustering solutions. Results show that transfer learning significantly outperforms the other methods. The dataset used in the pretrained model critically determines what categories the algorithms can discover.</description><subject>Classification</subject><subject>Climate change</subject><subject>Clustering</subject><subject>Extraction</subject><subject>Imagery</subject><subject>Learning</subject><subject>Social research</subject><issn>0049-1241</issn><issn>1552-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz6mz_5KNtxKtFgqCtV7DZjNpt7RJ3E0E_fSmVPAgnoZhfu_N4xFyzWDCWJLcAsiUcck4Z6B5DOKEjJhSPNI8ladkdLhHB-CcXISwBWA8ATEi-Xxv1kizXR869K5e39FpTVd16Fv0Hy5gSadt6xtjN7RraGY6XDfefSF9c6E3O3pvOkNdTZeNdcO6tA5ri_QFAxpvN5fkrDK7gFc_c0xWs4fX7ClaPD_Os-kiskKpLhKFQC2NlrLisS2wspgYUGWqVCKtNokALgtplORFXNoStKi0TFIsuEhZiWJMbo6-Q9b3HkOXb5ve18PLXIBOUxAQy4FiR8r6JgSPVd56tzf-M2eQH3rM__Q4aCZHTRiK-nX9X_ANmT1xpA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Han</creator><creator>Peng, Yilang</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope><orcidid>https://orcid.org/0000-0003-2912-8780</orcidid><orcidid>https://orcid.org/0000-0001-7711-9518</orcidid></search><sort><creationdate>20240801</creationdate><title>Image Clustering: An Unsupervised Approach to Categorize Visual Data in Social Science Research</title><author>Zhang, Han ; Peng, Yilang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-3b3e84a844f26cbefce7a05d95574c8a73024b4a542b6dcd083f8479eb2391de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Climate change</topic><topic>Clustering</topic><topic>Extraction</topic><topic>Imagery</topic><topic>Learning</topic><topic>Social research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Peng, Yilang</creatorcontrib><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Sociological methods & research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Han</au><au>Peng, Yilang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Clustering: An Unsupervised Approach to Categorize Visual Data in Social Science Research</atitle><jtitle>Sociological methods & research</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>53</volume><issue>3</issue><spage>1534</spage><epage>1587</epage><pages>1534-1587</pages><issn>0049-1241</issn><eissn>1552-8294</eissn><abstract>Automated image analysis has received increasing attention in social scientific research, yet existing scholarship has mostly covered the application of supervised learning to classify images into predefined categories. This study focuses on the task of unsupervised image clustering, which aims to automatically discover categories from unlabelled image data. We first review the steps to perform image clustering and then focus on one key challenge in this task—finding intermediate representations of images. We present several methods of extracting intermediate image representations, including the bag-of-visual-words model, self-supervised learning, and transfer learning (in particular, feature extraction with pretrained models). We compare these methods using various visual datasets, including images related to protests in China from Weibo, images about climate change on Instagram, and profile images of the Russian Internet Research Agency on Twitter. In addition, we propose a systematic way to interpret and validate clustering solutions. Results show that transfer learning significantly outperforms the other methods. The dataset used in the pretrained model critically determines what categories the algorithms can discover.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/00491241221082603</doi><tpages>54</tpages><orcidid>https://orcid.org/0000-0003-2912-8780</orcidid><orcidid>https://orcid.org/0000-0001-7711-9518</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-1241 |
ispartof | Sociological methods & research, 2024-08, Vol.53 (3), p.1534-1587 |
issn | 0049-1241 1552-8294 |
language | eng |
recordid | cdi_proquest_journals_3089903064 |
source | Sociological Abstracts; SAGE Complete A-Z List |
subjects | Classification Climate change Clustering Extraction Imagery Learning Social research |
title | Image Clustering: An Unsupervised Approach to Categorize Visual Data in Social Science Research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Clustering:%20An%20Unsupervised%20Approach%20to%20Categorize%20Visual%20Data%20in%20Social%20Science%20Research&rft.jtitle=Sociological%20methods%20&%20research&rft.au=Zhang,%20Han&rft.date=2024-08-01&rft.volume=53&rft.issue=3&rft.spage=1534&rft.epage=1587&rft.pages=1534-1587&rft.issn=0049-1241&rft.eissn=1552-8294&rft_id=info:doi/10.1177/00491241221082603&rft_dat=%3Cproquest_cross%3E3089903064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089903064&rft_id=info:pmid/&rft_sage_id=10.1177_00491241221082603&rfr_iscdi=true |