Image Clustering: An Unsupervised Approach to Categorize Visual Data in Social Science Research

Automated image analysis has received increasing attention in social scientific research, yet existing scholarship has mostly covered the application of supervised learning to classify images into predefined categories. This study focuses on the task of unsupervised image clustering, which aims to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sociological methods & research 2024-08, Vol.53 (3), p.1534-1587
Hauptverfasser: Zhang, Han, Peng, Yilang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automated image analysis has received increasing attention in social scientific research, yet existing scholarship has mostly covered the application of supervised learning to classify images into predefined categories. This study focuses on the task of unsupervised image clustering, which aims to automatically discover categories from unlabelled image data. We first review the steps to perform image clustering and then focus on one key challenge in this task—finding intermediate representations of images. We present several methods of extracting intermediate image representations, including the bag-of-visual-words model, self-supervised learning, and transfer learning (in particular, feature extraction with pretrained models). We compare these methods using various visual datasets, including images related to protests in China from Weibo, images about climate change on Instagram, and profile images of the Russian Internet Research Agency on Twitter. In addition, we propose a systematic way to interpret and validate clustering solutions. Results show that transfer learning significantly outperforms the other methods. The dataset used in the pretrained model critically determines what categories the algorithms can discover.
ISSN:0049-1241
1552-8294
DOI:10.1177/00491241221082603