Preservation of Topological Properties by Strongly Proper Forcings

In this paper we show that forcings which are strongly proper for stationarily many countable elementary submodels preserve each of the following properties of topological spaces: countably tight; Lindel\"of; Rothberger; Menger; and a strategic version of Rothberger. This extends results from D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Gilton, Thomas, Holshouser, Jared
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gilton, Thomas
Holshouser, Jared
description In this paper we show that forcings which are strongly proper for stationarily many countable elementary submodels preserve each of the following properties of topological spaces: countably tight; Lindel\"of; Rothberger; Menger; and a strategic version of Rothberger. This extends results from Dow, as well as from Iwasa and from Kada.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3089694402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089694402</sourcerecordid><originalsourceid>FETCH-proquest_journals_30896944023</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoW1jZNX4ukRyHfRWXKZOzavTPw7-vBD-jpwDlnxyKp1CXJtZQHFhNNQgiZXWWaqojdKjRk8NMGC57DwGuYwcFo-9bxCmE2GKwh3q38FRD86NZN8xKwt36kE9sPrSMTbzyyc_mo789kRngvhkIzwYL-lxol8iIrtBZS_Xd9AQ2eOnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089694402</pqid></control><display><type>article</type><title>Preservation of Topological Properties by Strongly Proper Forcings</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Gilton, Thomas ; Holshouser, Jared</creator><creatorcontrib>Gilton, Thomas ; Holshouser, Jared</creatorcontrib><description>In this paper we show that forcings which are strongly proper for stationarily many countable elementary submodels preserve each of the following properties of topological spaces: countably tight; Lindel\"of; Rothberger; Menger; and a strategic version of Rothberger. This extends results from Dow, as well as from Iwasa and from Kada.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Topology</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gilton, Thomas</creatorcontrib><creatorcontrib>Holshouser, Jared</creatorcontrib><title>Preservation of Topological Properties by Strongly Proper Forcings</title><title>arXiv.org</title><description>In this paper we show that forcings which are strongly proper for stationarily many countable elementary submodels preserve each of the following properties of topological spaces: countably tight; Lindel\"of; Rothberger; Menger; and a strategic version of Rothberger. This extends results from Dow, as well as from Iwasa and from Kada.</description><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoW1jZNX4ukRyHfRWXKZOzavTPw7-vBD-jpwDlnxyKp1CXJtZQHFhNNQgiZXWWaqojdKjRk8NMGC57DwGuYwcFo-9bxCmE2GKwh3q38FRD86NZN8xKwt36kE9sPrSMTbzyyc_mo789kRngvhkIzwYL-lxol8iIrtBZS_Xd9AQ2eOnI</recordid><startdate>20241002</startdate><enddate>20241002</enddate><creator>Gilton, Thomas</creator><creator>Holshouser, Jared</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241002</creationdate><title>Preservation of Topological Properties by Strongly Proper Forcings</title><author>Gilton, Thomas ; Holshouser, Jared</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30896944023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Gilton, Thomas</creatorcontrib><creatorcontrib>Holshouser, Jared</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilton, Thomas</au><au>Holshouser, Jared</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Preservation of Topological Properties by Strongly Proper Forcings</atitle><jtitle>arXiv.org</jtitle><date>2024-10-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper we show that forcings which are strongly proper for stationarily many countable elementary submodels preserve each of the following properties of topological spaces: countably tight; Lindel\"of; Rothberger; Menger; and a strategic version of Rothberger. This extends results from Dow, as well as from Iwasa and from Kada.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3089694402
source Open Access: Freely Accessible Journals by multiple vendors
subjects Topology
title Preservation of Topological Properties by Strongly Proper Forcings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Preservation%20of%20Topological%20Properties%20by%20Strongly%20Proper%20Forcings&rft.jtitle=arXiv.org&rft.au=Gilton,%20Thomas&rft.date=2024-10-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3089694402%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089694402&rft_id=info:pmid/&rfr_iscdi=true