Preservation of Topological Properties by Strongly Proper Forcings

In this paper we show that forcings which are strongly proper for stationarily many countable elementary submodels preserve each of the following properties of topological spaces: countably tight; Lindel\"of; Rothberger; Menger; and a strategic version of Rothberger. This extends results from D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Gilton, Thomas, Holshouser, Jared
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we show that forcings which are strongly proper for stationarily many countable elementary submodels preserve each of the following properties of topological spaces: countably tight; Lindel\"of; Rothberger; Menger; and a strategic version of Rothberger. This extends results from Dow, as well as from Iwasa and from Kada.
ISSN:2331-8422