Preservation of Topological Properties by Strongly Proper Forcings
In this paper we show that forcings which are strongly proper for stationarily many countable elementary submodels preserve each of the following properties of topological spaces: countably tight; Lindel\"of; Rothberger; Menger; and a strategic version of Rothberger. This extends results from D...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we show that forcings which are strongly proper for stationarily many countable elementary submodels preserve each of the following properties of topological spaces: countably tight; Lindel\"of; Rothberger; Menger; and a strategic version of Rothberger. This extends results from Dow, as well as from Iwasa and from Kada. |
---|---|
ISSN: | 2331-8422 |