Applying Conditional Generative Adversarial Networks for Imaging Diagnosis

This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN) aimed at enhancing image segmentation, particularly in the challenging environment of medical imaging. We address the problem of overfitting, commo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Yang, Haowei, Hu, Yuxiang, He, Shuyao, Xu, Ting, Yuan, Jiajie, Gu, Xingxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN) aimed at enhancing image segmentation, particularly in the challenging environment of medical imaging. We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling. A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging. Our approach is unique in its capacity to accurately delineate distinct regions within medical images, such as tissue boundaries and vascular structures, without extensive reliance on domain-specific knowledge. The algorithm was evaluated using a standard medical image library, showing superior performance metrics compared to existing methods, thereby demonstrating its potential in enhancing automated medical diagnostics through deep learning
ISSN:2331-8422