An Efficient Real-Time Object Detection Framework on Resource-Constricted Hardware Devices via Software and Hardware Co-design
The fast development of object detection techniques has attracted attention to developing efficient Deep Neural Networks (DNNs). However, the current state-of-the-art DNN models can not provide a balanced solution among accuracy, speed, and model size. This paper proposes an efficient real-time obje...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fast development of object detection techniques has attracted attention to developing efficient Deep Neural Networks (DNNs). However, the current state-of-the-art DNN models can not provide a balanced solution among accuracy, speed, and model size. This paper proposes an efficient real-time object detection framework on resource-constrained hardware devices through hardware and software co-design. The Tensor Train (TT) decomposition is proposed for compressing the YOLOv5 model. By unitizing the unique characteristics given by the TT decomposition, we develop an efficient hardware accelerator based on FPGA devices. Experimental results show that the proposed method can significantly reduce the model size and improve the execution time. |
---|---|
ISSN: | 2331-8422 |