GPUDrive: Data-driven, multi-agent driving simulation at 1 million FPS
Multi-agent learning algorithms have been successful at generating superhuman planning in various games but have had limited impact on the design of deployed multi-agent planners. A key bottleneck in applying these techniques to multi-agent planning is that they require billions of steps of experien...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi-agent learning algorithms have been successful at generating superhuman planning in various games but have had limited impact on the design of deployed multi-agent planners. A key bottleneck in applying these techniques to multi-agent planning is that they require billions of steps of experience. To enable the study of multi-agent planning at scale, we present GPUDrive, a GPU-accelerated, multi-agent simulator built on top of the Madrona Game Engine that can generate over a million simulation steps per second. Observation, reward, and dynamics functions are written directly in C++, allowing users to define complex, heterogeneous agent behaviors that are lowered to high-performance CUDA. We show that using GPUDrive we can effectively train reinforcement learning agents over many scenes in the Waymo Open Motion Dataset, yielding highly effective goal-reaching agents in minutes for individual scenes and enabling agents to navigate thousands of scenarios within hours. The code base with pre-trained agents is available at \url{https://github.com/Emerge-Lab/gpudrive}. |
---|---|
ISSN: | 2331-8422 |