Design, development, and construction of the new beam stoppers for CERN's injector complex
Beam stoppers are installed in the transfer lines of the CERN accelerator complex; these components are used as part of the access safety system, which guarantees the safety of workers in the accelerators. They are designed to stop one or at most a few pulses of the beam, where "stop" mean...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Beam stoppers are installed in the transfer lines of the CERN accelerator complex; these components are used as part of the access safety system, which guarantees the safety of workers in the accelerators. They are designed to stop one or at most a few pulses of the beam, where "stop" means the partial or complete absorption of the primary beam in such a way that the remaining unabsorbed primary or secondary beam remains below a specified threshold, as defined by the needs of radiation protection. Prior to Long Shutdown 2 (LS2; 2018--2021), beam stoppers in the injector complex were dimensioned for beam-pulse energies between 9.0 and 30~kJ. The upgrade of the accelerator complex in the framework of the LHC Injectors Upgrade (LIU) project involves beam-pulse energies of up to 92.5~kJ, meaning that these beam stoppers are not able to fulfill the new functional specifications. To cope with the LIU beam parameters and fulfil requirements for safety, maintainability, efficiency, and reliability, a new generation of 28 beam stoppers has been designed, built, and installed. The aim of this paper is to demonstrate the requirements-driven design of these new beam stoppers, outlining the main requirements along with a description of the design and structural assessments. This document presents the implementation and integration of a standardized but adaptable design using a unique 564-mm-long stopper core with a CuCr1Zr absorber and an Inconel~718 diluter, taking into account radiological and infrastructure challenges. The installation process is also described, and the first operational feedback received since LS2 is presented. |
---|---|
ISSN: | 2331-8422 |